155 research outputs found

    A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement

    Get PDF
    Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates.

    Small anisotropy of the lower critical field and s±s_\pm-wave two-gap feature in single crystal LiFeAs

    Full text link
    The in- and out-of-plane lower critical fields and magnetic penetration depths for LiFeAs were examined. The anisotropy ratio γHc1(0)\gamma_{H_{c1}}(0) is smaller than the expected theoretical value, and increased slightly with increasing temperature from 0.6TcT_c to TcT_c. This small degree of anisotropy was numerically confirmed by considering electron correlation effect. The temperature dependence of the penetration depths followed a power law(\simTnT^n) below 0.3TcT_c, with nn>>3.5 for both λab\lambda_{ab} and λc\lambda_c. Based on theoretical studies of iron-based superconductors, these results suggest that the superconductivity of LiFeAs can be represented by an extended s±s_\pm-wave due to weak impurity scattering effect. And the magnitudes of the two gaps were also evaluted by fitting the superfluid density for both the in- and out-of-plane to the two-gap model. The estimated values for the two gaps are consistent with the results of angle resolved photoemission spectroscopy and specific heat experiments.Comment: 10 pages, 5 figure

    Influence of B1 Inhomogeneity on Pharmacokinetic Modeling of Dynamic Contrast-Enhanced MRI: A Simulation Study

    Get PDF
    Objective: To simulate the B1-inhomogeneity-induced variation of pharmacokinetic parameters on DCE-MRI. Materials and Methods: B1-inhomogeneity-induced flip angle (FA) variation was estimated in a phantom study. Monte Carlo simulation was performed to assess the FA-deviation-induced measurement error of the pre-contrast R1, contrast-enhancement ratio, Gd concentration, and two-compartment pharmacokinetic parameters (Ktrans, ve and vp). Results: B1-inhomogeneity resulted in -23% ~ 5% fluctuations (95% confidence interval (CI) of % error) of FA. The 95% CIs of FA-dependent % errors in the gray matter and blood were as follows: -16.7% - 61.8% and -16.7% - 61.8% for the pre-contrast R1, -1.0% - 0.3% and -5.2% - 1.3% for the contrast-enhancement ratio, and -14.2% - 58.1% and -14.1% - 57.8% for the Gd concentration, respectively. These resulted in -43.1% - 48.4% error for Ktrans, -32.3% - 48.6% error for the ve, and -43.2% - 48.6% error for vp. The pre-contrast R1 was more vulnerable to FA error than the contrast-enhancement ratio, and was therefore a significant cause of the Gd-concentration error. For example, a -10% FA error led to a 23.6% deviation in the pre-contrast R1, -0.4% in the contrast-enhancement ratio, and 23.6% in the Gd concentration. In a simulated condition with a 3% FA error in a target lesion and a -10% FA error in a feeding vessel, the % errors of the pharmacokinetic parameters were -23.7% for Ktrans, -23.7% for ve, and -23.7% for vp. Conclusion: Even a small degree of B1-inhomogeneity can cause a significant error in the measurement of pharmacokinetic parameters on DCE-MRI, while the vulnerability of the pre-contrast R1 calculations to FA deviations is a significant cause of the miscalculation.ope

    Interrelationship of Pyrogenic Polycyclic Aromatic Hydrocarbon (PAH) Contamination in Different Environmental Media

    Get PDF
    Interrelationships between pyrogenic polycyclic aromatic hydrocarbons (PAHs) were assessed in air, soil, water, sediment, and tree leaves by using multi-media monitoring data. Concurrent concentration measurements were taken bimonthly for a year for the multi-media at urban and suburban sites. PAH level correlations between air and other media were observed at the urban site but were less clear at the suburban site. Considering a closer PAHs distribution/fate characteristics to soil than suspended solids, contamination in sediment seemed to be governed primarily by that in soil. The partitioning of PAHs in waters could be better accounted for by sorption onto black carbon and dissolved organic carbon

    Down-Regulation of NF-κB Target Genes by the AP-1 and STAT Complex during the Innate Immune Response in Drosophila

    Get PDF
    The activation of several transcription factors is required for the elimination of infectious pathogens via the innate immune response. The transcription factors NF-κB, AP-1, and STAT play major roles in the synthesis of immune effector molecules during innate immune responses. However, the fact that these immune responses can have cytotoxic effects requires their tight regulation to achieve restricted and transient activation, and mis-regulation of the damping process has pathological consequences. Here we show that AP-1 and STAT are themselves the major inhibitors responsible for damping NF-κB–mediated transcriptional activation during the innate immune response in Drosophila. As the levels of dAP-1 and Stat92E increase due to continuous immune signaling, they play a repressive role by forming a repressosome complex with the Drosophila HMG protein, Dsp1. The dAP-1–, Stat92E-, and Dsp1-containing complexes replace Relish at the promoters of diverse immune effector genes by binding to evolutionarily conserved cis-elements, and they recruit histone deacetylase to inhibit transcription. Reduction by mutation of dAP-1, Stat92E, or Dsp1 results in hyperactivation of Relish target genes and reduces the viability of bacterially infected flies despite more efficient pathogen clearance. These defects are rescued by reducing the Relish copy number, thus confirming that mis-regulation of Relish, not inadequate activation of dAP-1, Stat92E, or Dsp1 target genes, is responsible for the reduced survival of the mutants. We conclude that an inhibitory effect of AP-1 and STAT on NF-κB is required for properly balanced immune responses and appears to be evolutionarily conserved

    Treatment Outcome and Mortality among Patients with Multidrug-resistant Tuberculosis in Tuberculosis Hospitals of the Public Sector

    Get PDF
    This study was conducted to evaluate treatment outcome, mortality, and predictors of both in patients with multidrug-resistant tuberculosis (MDR-TB) at 3 TB referral hospitals in the public sector of Korea. We included MDR-TB patients treated at 3 TB referral hospitals in 2004 and reviewed retrospectively their medical records and mortality data. Of 202 MDR-TB patients, 75 (37.1%) had treatment success and 127 (62.9%) poor outcomes. Default rate was high (37.1%, 75/202), comprising 59.1% of poor outcomes. Male sex (adjusted odds ratio [aOR], 2.91; 95% confidence interval [CI], 1.13-7.49), positive smear at treatment initiation (aOR, 5.50; 95% CI, 1.22-24.90), and extensively drug-resistant TB (aOR, 10.72; 95% CI, 1.23-93.64) were independent predictors of poor outcome. The all-cause mortality rate was 31.2% (63/202) during the 3-4 yr after treatment initiation. In conclusion, the treatment outcomes of patients with MDR-TB at the 3 TB hospitals are poor, which may reflect the current status of MDR-TB in the public sector of Korea. A more comprehensive program against MDR-TB needs to be integrated into the National Tuberculosis Program of Korea

    Tiny Medicine: Nanomaterial-Based Biosensors

    Get PDF
    Tiny medicine refers to the development of small easy to use devices that can help in the early diagnosis and treatment of disease. Early diagnosis is the key to successfully treating many diseases. Nanomaterial-based biosensors utilize the unique properties of biological and physical nanomaterials to recognize a target molecule and effect transduction of an electronic signal. In general, the advantages of nanomaterial-based biosensors are fast response, small size, high sensitivity, and portability compared to existing large electrodes and sensors. Systems integration is the core technology that enables tiny medicine. Integration of nanomaterials, microfluidics, automatic samplers, and transduction devices on a single chip provides many advantages for point of care devices such as biosensors. Biosensors are also being used as new analytical tools to study medicine. Thus this paper reviews how nanomaterials can be used to build biosensors and how these biosensors can help now and in the future to detect disease and monitor therapies

    Clinical features and outcomes of gastric variceal bleeding: retrospective Korean multicenter data

    Get PDF
    Background/AimsWhile gastric variceal bleeding (GVB) is not as prevalent as esophageal variceal bleeding, it is reportedly more serious, with high failure rates of the initial hemostasis (>30%), and has a worse prognosis than esophageal variceal bleeding. However, there is limited information regarding hemostasis and the prognosis for GVB. The aim of this study was to determine retrospectively the clinical outcomes of GVB in a multicenter study in Korea.MethodsThe data of 1,308 episodes of GVB (males:females=1062:246, age=55.0±11.0 years, mean±SD) were collected from 24 referral hospital centers in South Korea between March 2003 and December 2008. The rates of initial hemostasis failure, rebleeding, and mortality within 5 days and 6 weeks of the index bleed were evaluated.ResultsThe initial hemostasis failed in 6.1% of the patients, and this was associated with the Child-Pugh score [odds ratio (OR)=1.619; P<0.001] and the treatment modality: endoscopic variceal ligation, endoscopic variceal obturation, and balloon-occluded retrograde transvenous obliteration vs. endoscopic sclerotherapy, transjugular intrahepatic portosystemic shunt, and balloon tamponade (OR=0.221, P<0.001). Rebleeding developed in 11.5% of the patients, and was significantly associated with Child-Pugh score (OR=1.159, P<0.001) and treatment modality (OR=0.619, P=0.026). The GVB-associated mortality was 10.3%; mortality in these cases was associated with Child-Pugh score (OR=1.795, P<0.001) and the treatment modality for the initial hemostasis (OR=0.467, P=0.001).ConclusionsThe clinical outcome for GVB was better for the present cohort than in previous reports. Initial hemostasis failure, rebleeding, and mortality due to GVB were universally associated with the severity of liver cirrhosis
    corecore