18 research outputs found

    60 million years of glaciation in the Transantarctic Mountains

    Get PDF
    The Antarctic continent reached its current polar location ~83 Ma and became shrouded by ice sheets ~34 Ma, coincident with dramatic global cooling at the Eocene-Oligocene boundary. However, it is not known whether the first Antarctic glaciers formed immediately prior to this or were present significantly earlier. Here we show that mountain glaciers were likely present in the Transantarctic Mountains during the Late Palaeocene (~60–56 Ma) and middle Eocene (~48–40 Ma). Temperate (warm-based) glaciers were prevalent during the Late Eocene (~40–34 Ma) and, in reduced numbers, during the Oligocene (~34–23 Ma), before larger, likely cold-based, ice masses (including ice sheets) dominated. Some temperate mountain glaciers were present during the Miocene Climatic Optimum (~15 Ma), before a widespread switch to cold-based glaciation. Our findings highlight the longevity of glaciation in Antarctica and suggest that glaciers were present even during the Early-Cenozoic greenhouse world

    Climate change and the long-term viability of the World’s busiest heavy haul ice road

    Get PDF
    Climate models project that the northern high latitudes will warm at a rate in excess of the global mean. This will pose severe problems for Arctic and sub-Arctic infrastructure dependent on maintaining low temperatures for structural integrity. This is the case for the economically important Tibbitt to Contwoyto Winter Road (TCWR)—the world’s busiest heavy haul ice road, spanning 400 km across mostly frozen lakes within the Northwest Territories of Canada. In this study, future climate scenarios are developed for the region using statistical downscaling methods. In addition, changes in lake ice thickness are projected based on historical relationships between measured ice thickness and air temperatures. These projections are used to infer the theoretical operational dates of the TCWR based on weight limits for trucks on the ice. Results across three climate models driven by four RCPs reveal a considerable warming trend over the coming decades. Projected changes in ice thickness reveal a trend towards thinner lake ice and a reduced time window when lake ice is at sufficient thickness to support trucks on the ice road, driven by increasing future temperatures. Given the uncertainties inherent in climate modelling and the resultant projections, caution should be exercised in interpreting the magnitude of these scenarios. More certain is the direction of change, with a clear trend towards winter warming that will reduce the operation time window of the TCWR. This illustrates the need for planners and policymakers to consider future changes in climate when planning annual haulage along the TCWR

    Recent climate change has driven divergent hydrological shifts in high-latitude peatlands

    Get PDF
    A recent synthesis study found 54% of the high-latitude peatlands have been drying and 32% have been wetting over the past centuries, illustrating their complex ecohydrological dynamics and highly uncertain responses to a warming climate. High-latitude peatlands are changing rapidly in response to climate change, including permafrost thaw. Here, we reconstruct hydrological conditions since the seventeenth century using testate amoeba data from 103 high-latitude peat archives. We show that 54% of the peatlands have been drying and 32% have been wetting over this period, illustrating the complex ecohydrological dynamics of high latitude peatlands and their highly uncertain responses to a warming climate.Peer reviewe

    Evaluating the use of testate amoeba for palaeohydrological reconstruction in permafrost peatlands

    Get PDF
    The melting of high-latitude permafrost peatlands is a major concern due to a potential positive feedback on global climate change. We examine the ecology of testate amoebae in permafrost peatlands, based on sites in Sweden (~ 200 km north of the Arctic Circle). Multivariate statistical analysis confirms that water-table depth and moisture content are the dominant controls on the distribution of testate amoebae, corroborating the results from studies in mid-latitude peatlands. We present a new testate amoeba-based water table transfer function and thoroughly test it for the effects of spatial autocorrelation, clustered sampling design and uneven sampling gradients. We find that the transfer function has good predictive power; the best-performing model is based on tolerance-downweighted weighted averaging with inverse deshrinking (performance statistics with leave-one-out cross validation: R2 = 0.87, RMSEP = 5.25 cm). The new transfer function was applied to a short core from Stordalen mire, and reveals a major shift in peatland ecohydrology coincident with the onset of the Little Ice Age (c. AD 1400). We also applied the model to an independent contemporary dataset from Stordalen and find that it outperforms predictions based on other published transfer functions. The new transfer function will enable palaeohydrological reconstruction from permafrost peatlands in Northern Europe, thereby permitting greatly improved understanding of the long-term ecohydrological dynamics of these important carbon stores as well as their responses to recent climate change

    Drivers of Holocene palsa distribution in North America

    Get PDF
    Palsas and peat plateaus are climatically sensitive landforms in permafrost peatlands. Climate envelope models have previously related palsa/peat plateau distributions in Europe to modern climate, but similar bioclimatic modelling has not been attempted for North America. Recent climate change has rendered many palsas/peat plateaus in this region, and their valuable carbon stores, vulnerable. We fitted a binary logistic regression model to predict palsa/peat plateau presence for North America by relating the distribution of 352 extant landforms to gridded modern climate data. Our model accurately classified 85.3% of grid cells that contain observed palsas/peat plateaus and 77.1% of grid cells without observed palsas/peat plateaus. The model indicates that modern North American palsas/peat plateaus are supported by cold, dry climates with large seasonal temperature ranges and mild growing seasons. We used palaeoclimate simulations from a general circulation model to simulate Holocene distributions of palsas/peat plateaus at 500-year intervals. We constrained these outputs with timings of peat initiation, deglaciation, and postglacial drainage across the continent. Our palaeoclimate simulations indicate that this climate envelope remained stationary in western North America throughout the Holocene, but further east it migrated northwards during 11.5–6.0 ka BP. However, palsa extents in eastern North America were restricted from following this moving climate envelope by late deglaciation, drainage and peat initiation. We validated our Holocene simulations against available palaeoecological records and whilst they agree that permafrost peatlands aggraded earliest in western North America, our simulations contest previous suggestions that late permafrost aggradation in central Canada was climatically-driven

    Widespread drying of European peatlands in recent centuries

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this record Climate warming and human impacts are thought to be causing peatlands to dry,potentially converting them from sinks to sources of carbon. However, it is unclear whether the hydrological status of peatlands has moved beyond their natural envelope. Here we show that European peatlands have undergone substantial, widespread drying during the last ~300 years. We analyse testate amoeba-derived hydrological reconstructions from 31 peatlands across Britain, Ireland, Scandinavia and continental Europe to examine changes in peatland surface wetness during the last 2000 years. 60% of our study sites were drier during the period CE 1800-2000 than they have been for the last 600 years; 40% of sites were drier than they have been for 1000 years; and 24% of sites were drier than they have been for 2000 years. This marked recent transition in the hydrology of European peatlands is concurrent with compound pressures including climatic drying, warming and direct human impacts on peatlands, although these factors vary between regions and individual sites. Our results suggest that the wetness of many European peatlands may now be moving away from natural baselines. Our findings highlight the need for effective management and restoration of European peatlands.Natural Environment Research Council (NERC

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    corecore