7 research outputs found

    High Frequency Oxygen Data from Eight Shallow Prairie Pothole Lakes, 2009-2013

    No full text
    This dataset includes high frequency oxygen measurements from 8 shallow lakes. Each lake has a separate data file of oxygen measurements from the study period. Also included are data files of water chemistry, macrophyte biomass, and calculated metabolism values which include all lakes.Dissolved oxygen controls important processes in lakes, from chemical reactions to organism community structure and metabolism. In shallow lakes, small volumes allow for large fluctuations in dissolved oxygen concentrations, and the oxygen regime can greatly affect ecosystem-scale processes. This data includes high frequency dissolved oxygen measurements that we used to examine differences in oxygen regimes between two alternative stable states that occur in shallow lakes. We compared annual oxygen regimes in four macrophyte-dominated, clear state lakes to four phytoplankton-dominated, turbid state lakes by quantifying oxygen concentrations, anoxia frequency, and measures of whole-lake metabolism. Oxygen regimes were not significantly different between lake states throughout the year except for during the winter under-ice period. During winter, clear lakes had less oxygen, higher frequency of anoxic periods, and higher oxygen depletion rates. Oxygen depletion rates correlated positively with peak summer macrophyte biomass. Due to lower levels of oxygen, clear shallow lakes may experience anoxia more often and for longer duration during the winter, increasing the likelihood of experiencing fish winterkill. These observations have important implications for shallow lake management, which typically focuses efforts on maintaining the clearwater state.National Science Foundation (NSF): DEB-0919095; National Science Foundation (NSF): DEB-091907

    Scaling relationships among drivers of aquatic respiration in temperate lakes: from the smallest to the largest freshwater ecosystems

    No full text
    To address how various environmental parameters control or constrain planktonic respiration (PR), we used geometric scaling relationships and established biological scaling laws to derive quantitative predictions for the relationships among key drivers of PR. We then used empirical measurements of PR and environmental (soluble reactive phosphate [SRP], carbon [DOC], chlorophyll a [Chl-a)], and temperature) and landscape parameters (lake area [LA] and watershed area [WA]) from a set of 44 lakes that varied in size and trophic status to test our hypotheses. We found that landscape-level processes affected PR through direct effects on DOC and temperature and indirectly via SRP. In accordance with predictions made from known relationships and scaling laws, scale coefficients (the parameter that describes the shape of a relationship between 2 variables) were found to be negative and have an absolute value <1. Biological parameters scaled positively with physical and chemical processes in accordance with those predicted from theory or previous studies (i.e., temperature >1, others <1). We also found evidence of a significant relationship between temperature and SRP. Because our dataset included measurements of respiration from small pond catchments to the largest body of freshwater on the planet, Lake Superior, these findings should be applicable to controls of PR for the great majority of temperate aquatic ecosystems

    Data from: The legacy of large regime shifts in shallow lakes

    No full text
    Ecological shifts in shallow lakes from clear-water macrophyte-dominated to turbid-water phytoplankton-dominated are generally thought of as rapid short-term transitions. Diatom remains in sediment records from shallow lakes in the Prairie Pothole Region of North America provide new evidence that the long-term ecological stability of these lakes is defined by the legacy of large regime shifts. Here we examine the modern and historical stability of eleven shallow lakes. Currently, four of the lakes are in a clear-water state, three are consistently turbid-water, and four have been observed to change state from year to year (transitional). Lake sediment records spanning the past 150-200 years suggest that: 1) the diatom assemblage is characteristic of either clear or turbid lakes; 2) prior to significant landscape alteration, all of the lakes existed in a regime of a stable clear-water state; 3) lakes that are currently classified as turbid or transitional have experienced one strong regime shift over the past 150-200 years, and have since remained in a regime where turbid-water predominates; and 4) top-down impacts to the lake food web from fish introductions appear to be the dominant driver of strong regime shifts, and not increased nutrient availability. Based on our findings we demonstrate a method that could be used by lake managers to identify lakes that have an ecological history close to the clear-turbid regime threshold; such lakes might more easily be returned to a clear-water state through biomanipulation. The unfortunate reality is that many of these lakes are now part of a managed landscape and will likely require continued intervention

    Ramstack Hobbs_Ecological Applications_2016

    No full text
    This file contains diatom species data from eleven shallow lake sediment cores from the Prairie Pothole Region of Minnesota, USA. The file also contains diatom species and environmental data for a 145-lake calibration set from the state of Minnesota. The first sheet of this spreadsheet gives a full description of the data

    Ecology under lake ice

    No full text
    Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experi-ence periods of snow and ice cover. Relatively little is known of winter ecology in these systems,due to a historical research focus on summer ‘growing seasons’. We executed the first global quan-titative synthesis on under-ice lake ecology, including 36 abiotic and biotic variables from 42research groups and 101 lakes, examining seasonal differences and connections as well as how sea-sonal differences vary with geophysical factors. Plankton were more abundant under ice thanexpected; mean winter values were 43.2% of summer values for chlorophyll a, 15.8% of summerphytoplankton biovolume and 25.3% of summer zooplankton density. Dissolved nitrogen concen-trations were typically higher during winter, and these differences were exaggerated in smallerlakes. Lake size also influenced winter-summer patterns for dissolved organic carbon (DOC), withhigher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation, phytoplanktonand zooplankton community composition showed few systematic differences between seasons,although literature suggests that seasonal differences are frequently lake-specific, species-specific,or occur at the level of functional group. Within the subset of lakes that had longer time series,winter influenced the subsequent summer for some nutrient variables and zooplankton biomas

    Ecology under lake ice

    Get PDF
    Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experience periods of snow and ice cover. Relatively little is known of winter ecology in these systems, due to a historical research focus on summer 'growing seasons'. We executed the first global quantitative synthesis on under-ice lake ecology, including 36 abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal differences and connections as well as how seasonal differences vary with geophysical factors. Plankton were more abundant under ice than expected; mean winter values were 43.2% of summer values for chlorophyll a, 15.8% of summer phytoplankton biovolume and 25.3% of summer zooplankton density. Dissolved nitrogen concentrations were typically higher during winter, and these differences were exaggerated in smaller lakes. Lake size also influenced winter-summer patterns for dissolved organic carbon (DOC), with higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation, phytoplankton and zooplankton community composition showed few systematic differences between seasons, although literature suggests that seasonal differences are frequently lake-specific, species-specific, or occur at the level of functional group. Within the subset of lakes that had longer time series, winter influenced the subsequent summer for some nutrient variables and zooplankton biomass

    A global database of nitrogen and phosphorous excretion rates of aquatic animals

    Get PDF
    Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences. Over the past two decades, studies of animal-mediated nutrient cycling have increased dramatically, especially in aquatic ecosystems. Here we present a global compilation of aquatic animal nutrient excretion rates. The dataset includes 10,534 observations from freshwater and marine animals of N and/or P excretion rates. These observations represent 491 species, including most aquatic phyla. Coverage varies greatly among phyla and other taxonomic levels. The dataset includes information on animal body size, ambient temperature, taxonomic affiliations, and animal body N:P. This data set was used to test predictions of MTE and ES, as described in Vanni and McIntyre (2016; Ecology DOI: 10.1002/ecy.1582). © 2017 Ecological Society of Americ
    corecore