72 research outputs found

    Combustion waves in a model with chain branching reaction and their stability

    Full text link
    In this paper the travelling wave solutions in the adiabatic model with two-step chain branching reaction mechanism are investigated both numerically and analytically in the limit of equal diffusivity of reactant, radicals and heat. The properties of these solutions and their stability are investigated in detail. The behaviour of combustion waves are demonstrated to have similarities with the properties of nonadiabatic one-step combustion waves in that there is a residual amount of fuel left behind the travelling waves and the solutions can exhibit extinction. The difference between the nonadiabatic one-step and adiabatic two-step models is found in the behaviour of the combustion waves near the extinction condition. It is shown that the flame velocity drops down to zero and a standing combustion wave is formed as the extinction condition is reached. Prospects of further work are also discussed.Comment: pages 32, figures 2

    Three-dimensionality of space and the quantum bit: an information-theoretic approach

    Full text link
    It is sometimes pointed out as a curiosity that the state space of quantum two-level systems, i.e. the qubit, and actual physical space are both three-dimensional and Euclidean. In this paper, we suggest an information-theoretic analysis of this relationship, by proving a particular mathematical result: suppose that physics takes place in d spatial dimensions, and that some events happen probabilistically (not assuming quantum theory in any way). Furthermore, suppose there are systems that carry "minimal amounts of direction information", interacting via some continuous reversible time evolution. We prove that this uniquely determines spatial dimension d=3 and quantum theory on two qubits (including entanglement and unitary time evolution), and that it allows observers to infer local spatial geometry from probability measurements.Comment: 13 + 22 pages, 9 figures. v4: some clarifications, in particular in Section V / Appendix C (added Example 39

    Melting, bubble-like expansion and explosion of superheated plasmonic nanoparticles

    Full text link
    We report on time-resolved coherent diffraction imaging of gas-phase silver nanoparticles, strongly heated via their plasmon resonance. The x-ray diffraction images reveal a broad range of phenomena for different excitation strengths, from simple melting over strong cavitation to explosive disintegration. Molecular dynamics simulations fully reproduce this behavior and show that the heating induces rather similar trajectories through the phase diagram in all cases, with the very different outcomes being due only to whether and where the stability limit of the metastable superheated liquid is crossed.Comment: 17 pages, 8 figures (including supplemental material

    Generic properties of the complementarity problem

    Full text link
    Given f : R + n → R n , the complementarity problem is to find a solution to x ≄ 0, f(x) ≄ 0, and 〈 x, f(x) âŒȘ = 0. Under the condition that f is continuously differentiable, we prove that for a generic set of such an f , the problem has a discrete solution set. Also, under a set of generic nondegeneracy conditions and a condition that implies existence, we prove that the problem has an odd number of solutions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47915/1/10107_2005_Article_BF01584674.pd

    Learning from Mother Nature: Innovative Tools to Boost Endogenous Repair of Critical or Difficult-to-Heal Large Tissue Defects

    Get PDF
    For repair of chronic or difficult-to-heal tissue lesions and defects, major constraints exist to a broad application of cell therapy and tissue engineering approaches, i.e., transplantation of "ex vivo" expanded autologous stem/progenitor cells, alone or associated with carrier biomaterials. To enable a large number of patients to benefit, new strategies should be considered. One of the main goals of contemporary regenerative medicine is to develop new regenerative therapies, inspired from Mother Nature. In all injured tissues, when platelets are activated by tissue contact, their released factors promote innate immune cell migration to the wound site. Platelet-derived factors and factors secreted by migrating immune cells create an inflammatory microenvironment, in turn, causing the activation of angiogenesis and vasculogenesis processes. Eventually, repair or regeneration of the injured tissue occurs via paracrine signals activating, mobilizing or recruiting to the wound site cells with healing potential, such as stem cells, progenitors, or undifferentiated cells derived from the reprogramming of tissue differentiated cells. This review, largely based on our studies, discusses the identification of new tools, inspired by cellular and molecular mechanisms overseeing physiological tissue healing, that could reactivate dormant endogenous regeneration mechanisms lost during evolution and ontogenesis

    Net‐Zero CO 2 Germany - A Retrospect From the Year 2050

    Get PDF
    Germany 2050: For the first time Germany reached a balance between its sources of anthropogenic CO2 to the atmosphere and newly created anthropogenic sinks. This backcasting study presents a fictional future in which this goal was achieved by avoiding (∌645 Mt CO2), reducing (∌50 Mt CO2) and removing (∌60 Mt CO2) carbon emissions. This meant substantial transformation of the energy system, increasing energy efficiency, sector coupling, and electrification, energy storage solutions including synthetic energy carriers, sector-specific solutions for industry, transport, and agriculture, as well as natural-sink enhancement and technological carbon dioxide options. All of the above was necessary to achieve a net-zero CO2 system for Germany by 2050

    The ‘affect tagging and consolidation’ (ATaC) model of depression vulnerability

    Get PDF
    Since the 1960’s polysomnographic sleep research has demonstrated that depressive episodes are associated with REM sleep alterations. Some of these alterations, such as increased REM sleep density, have also been observed in first-degree relatives of patients and remitted patients, suggesting that they may be vulnerability markers of major depressive disorder (MDD), rather than mere epiphenomena of the disorder. Neuroimaging studies have revealed that depression is also associated with heightened amygdala reactivity to negative emotional stimuli, which may also be a vulnerability marker for MDD. Several models have been developed to explain the respective roles of REM sleep alterations and negatively-biased amygdala activity in the pathology of MDD, however the possible interaction between these two potential risk-factors remains uncharted. This paper reviews the roles of the amygdala and REM sleep in the encoding and consolidation of negative emotional memories, respectively. We present our ‘affect tagging and consolidation’ (ATaC) model, which argues that increased REM sleep density and negatively-biased amygdala activity are two separate, genetically influenced risk-factors for depression which interact to promote the development of negative memory bias – a well-known cognitive vulnerability marker for depression. Predictions of the ATaC model may motivate research aimed at improving our understanding of sleep dependent memory consolidation in depression aetiology

    SARS-CoV-2-specific immune responses and clinical outcomes after COVID-19 vaccination in patients with immune-suppressive disease

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune responses and infection outcomes were evaluated in 2,686 patients with varying immune-suppressive disease states after administration of two Coronavirus Disease 2019 (COVID-19) vaccines. Overall, 255 of 2,204 (12%) patients failed to develop anti-spike antibodies, with an additional 600 of 2,204 (27%) patients generating low levels (<380 AU ml−1). Vaccine failure rates were highest in ANCA-associated vasculitis on rituximab (21/29, 72%), hemodialysis on immunosuppressive therapy (6/30, 20%) and solid organ transplant recipients (20/81, 25% and 141/458, 31%). SARS-CoV-2-specific T cell responses were detected in 513 of 580 (88%) patients, with lower T cell magnitude or proportion in hemodialysis, allogeneic hematopoietic stem cell transplantation and liver transplant recipients (versus healthy controls). Humoral responses against Omicron (BA.1) were reduced, although cross-reactive T cell responses were sustained in all participants for whom these data were available. BNT162b2 was associated with higher antibody but lower cellular responses compared to ChAdOx1 nCoV-19 vaccination. We report 474 SARS-CoV-2 infection episodes, including 48 individuals with hospitalization or death from COVID-19. Decreased magnitude of both the serological and the T cell response was associated with severe COVID-19. Overall, we identified clinical phenotypes that may benefit from targeted COVID-19 therapeutic strategies

    A blood atlas of COVID-19 defines hallmarks of disease severity and specificity.

    Get PDF
    Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete description of specific immune biomarkers. We present here a comprehensive multi-omic blood atlas for patients with varying COVID-19 severity in an integrated comparison with influenza and sepsis patients versus healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity involved cells, their inflammatory mediators and networks, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism, and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Systems-based integrative analyses including tensor and matrix decomposition of all modalities revealed feature groupings linked with severity and specificity compared to influenza and sepsis. Our approach and blood atlas will support future drug development, clinical trial design, and personalized medicine approaches for COVID-19
    • 

    corecore