1,396 research outputs found

    n-Type doped transparent conducting binary oxides: an overview

    Get PDF
    This article focuses on n-type doped transparent conducting binary oxides – namely, those with the general formula MxOy:D, where MxOy is the host oxide material and D is the dopant element. Such materials are of great industrial importance in modern materials chemistry. In particular, there is a focus on the search for alternatives to indium-based materials, prompted by indium's problematic supply risk as well as a number of functional factors. The important relationship between computational study and experimental observation is explored, and an extensive comparison is made between the electrical properties of a number of the most interesting experimentally-prepared materials. In writing this article, we aim to provide both an accessible tutorial of the physical descriptions of transparent conducting oxides, and an up-to-date overview of the field, with a brief history, some key accomplishments from the past few decades, the current state of the field as well as postulation on some likely future developments

    Transparent conducting n-type ZnO:Sc-synthesis, optoelectronic properties and theoretical insight

    Get PDF
    A joint theoretical-experimental study has been carried out for Sc-doped ZnO (SZO), one of the lesser-studied n-type transparent conducting oxide materials. Density functional theory has been used to create a computational model of SZO, in order to provide a theoretical basis for experimentally-observed phenomena where growth conditions, dopability and electronic properties are concerned. Meanwhile a range of thin films of SZO have been synthesised via chemical vapour deposition in an attempt to (i) observe experimentally the theoretically predicted properties, thereby providing mutual validation of the studies; (ii) seek the optimum dopant quantity for minimal electrical resistivity, and; (iii) demonstrate that transparent and electrically conductive SZO can be synthesised by chemical vapour deposition means. The films exhibit resistivities as low as ρ = 1.2 × 10 -3 Ω cm, with carrier density n = 7.2 × 10 20 cm -3 and charge carrier mobility μ = 7.5 cm 2 V -1 s -1 . Low resistivity of the films was retained after 12 months in storage under ambient conditions, indicating strong atmospheric stability. The films exhibit a high degree of transparency with 88% transmission in the visible range (400-750 nm). A correction to the Tauc method was applied to estimate band gaps of Eoptg = 3.45 ± 0.03 eV in the most conductive SZO sample and Eoptg = 3.34 ± 0.03 eV in nominally undoped ZnO

    Low-Cost One-Step Fabrication of Highly Conductive ZnO:Cl Transparent Thin Films with Tunable Photocatalytic Properties via Aerosol-Assisted Chemical Vapor Deposition

    Get PDF
    Low-cost, high-efficiency, and high quality Cl-doped ZnO (ZnO:Cl) thin films that can simultaneously function as transparent conducting oxides (TCOs) and photocatalysts are described. The films have been fabricated by a facile and inexpensive solution-source aerosol-assisted chemical vapor deposition technique using NH4Cl as an effective, cheap, and abundant source of Cl. Successful ClO substitutional doping in the ZnO films was evident from powder X-ray diffraction, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry results, while scanning electron microscopy reveals the impact of Cl doping on the ZnO thin film morphology. All ZnO:Cl films deposited were transparent and uncolored; optical transmittance in the visible region (400−700 nm) exceeded 80% for depositions using 5−20 mol % Cl. Optimal electrical properties were achieved when using 5 mol % Cl with a minimum measured resistivity of (2.72 ± 0.04) × 10−3 Ω·cm, in which the charge carrier concentration and mobility were measured at (8.58 ± 0.16) × 1019 cm−3 and 26.7 ± 0.1 cm2 V−1 s −1 respectively, corresponding to a sheet resistance (Rsh) of 41.9 Ω□−1 at a thickness of 650 nm. In addition to transparent conducting properties, photocatalytic behavior of stearic acid degradation in the ZnO:Cl films was also observed with an optimal Cl concentration of 7 mol % Cl, with the highest formal quantum efficiency (ξ) measured at (1.63 ± 0.03) × 10−4 molecule/photon, while retaining a visible transparency of 80% and resistivity ρ = (9.23 ± 0.13) × 10−3 Ω·cm. The dual functionality of ZnO:Cl as both a transparent conductor and an efficient photocatalyst is a unique combination of properties making this a particularly unusual material

    Luminescence behaviour and deposition of Sc2O3 thin films from scandium(III) acetylacetonate at ambient pressure

    Get PDF
    Scandium(III) oxide thin film deposition has been historically difficult to achieve without the use of vacuum-based or wet chemical systems due to precursor limitations of low vapour pressure or ambient instability. In this letter, the adoption of aerosol-assisted delivery of scandium(III) acetylacetonate has enabled the chemical vapour deposition of polycrystalline and amorphous Sc2O3 thin films at ambient pressure with high growth rates (ca. 500 nm h−1). The scandia films were intrinsically highly photoluminescent, exhibiting broad emission bands centred at 3.63.6 and 3.0 eV3.0 eV, which increased significantly in intensity upon aerobic annealing, accompanying a transition from amorphous to crystalline, while bands appearing at 2.12.1 and 2.3 eV2.3 eV seemed to occur only in the crystalline films. In addition, both amorphous and crystalline scandia films exhibited blue-green vibronic fine structure between 2.3 and 3.2 eV2.3 and 3.2 eV attributed to the electronic transition BΣ+→ΧΣ+22BΣ+→ΧΣ+22 in surface  ⋯O−⋯O−Sc=O ⋯O−⋯O−Sc=O groups and split by a vibrational mode observed at 920±60 cm−1920±60 cm−1 by infrared spectroscopy. Band gaps of amorphous and crystalline Sc2O3 were determined to be 5.35.3 and 5.7 eV5.7 eV, respectively via diffuse reflectance. All films had high refractive indices, varying between 1.8 and 2.0 at 400 nm400 nm depending on film thickness and carrier gas used in the deposition; film thicknesses less than ca. 300 nm300 nm were observed to have a strong influence on the refractive index measured, while there was little variation for films thicker than this. The synthesis process itself is exceedingly low-cost and facile thus promising streamlined industrial scalability

    Tertiary hypothyroidism in a dog

    Get PDF
    <p/> <p>A nine-year-old male entire Labrador was diagnosed with pituitary dependent hyperadrenocorticism. Following seven months of successful mitotane therapy, the dog presented with marked weight gain, seborrhoea and alopecia. Routine clinicopathological analyses revealed marked hypercholesterolaemia. Serum total and free thyroxine (T4) concentrations were below their respective reference ranges. Serum thyroid stimulating hormone (cTSH) concentration was within reference range. TSH and thyrotropin releasing hormone (TRH) response tests revealed adequate stimulation of total T4 in both, and cTSH in the latter test. Magnetic resonance imaging revealed a mass arising from the pituitary fossa, with suprasellar extension. A diagnosis of tertiary hypothyroidism was made. Following four weeks of levothyroxine therapy, circulating cholesterol concentration had declined, weight loss had ensued and dermatological abnormalities had improved. Euthanasia was performed four months later due to the development of neurological signs. A highly infiltrative pituitary adenoma, with effacement of the overlying hypothalamus was identified on post mortem examination. Tertiary hypothyroidism has not been previously reported in dogs.</p

    Mammalian Neurogenesis Requires Treacle-Plk1 for Precise Control of Spindle Orientation, Mitotic Progression, and Maintenance of Neural Progenitor Cells

    Get PDF
    The cerebral cortex is a specialized region of the brain that processes cognitive, motor, somatosensory, auditory, and visual functions. Its characteristic architecture and size is dependent upon the number of neurons generated during embryogenesis and has been postulated to be governed by symmetric versus asymmetric cell divisions, which mediate the balance between progenitor cell maintenance and neuron differentiation, respectively. The mechanistic importance of spindle orientation remains controversial, hence there is considerable interest in understanding how neural progenitor cell mitosis is controlled during neurogenesis. We discovered that Treacle, which is encoded by the Tcof1 gene, is a novel centrosome- and kinetochore-associated protein that is critical for spindle fidelity and mitotic progression. Tcof1/Treacle loss-of-function disrupts spindle orientation and cell cycle progression, which perturbs the maintenance, proliferation, and localization of neural progenitors during cortical neurogenesis. Consistent with this, Tcof1+/− mice exhibit reduced brain size as a consequence of defects in neural progenitor maintenance. We determined that Treacle elicits its effect via a direct interaction with Polo-like kinase1 (Plk1), and furthermore we discovered novel in vivo roles for Plk1 in governing mitotic progression and spindle orientation in the developing mammalian cortex. Increased asymmetric cell division, however, did not promote increased neuronal differentiation. Collectively our research has therefore identified Treacle and Plk1 as novel in vivo regulators of spindle fidelity, mitotic progression, and proliferation in the maintenance and localization of neural progenitor cells. Together, Treacle and Plk1 are critically required for proper cortical neurogenesis, which has important implications in the regulation of mammalian brain size and the pathogenesis of congenital neurodevelopmental disorders such as microcephaly

    Transparent superhydrophobic PTFE films via one-step aerosol assisted chemical vapor deposition

    Get PDF
    In this study, hierarchical micro/nano-structured transparent superhydrophobic polytetrafluoroethylene (PTFE) films showing a water contact angle (CA) of 168°, a water sliding angle (SA) 90% were prepared on glass substrates via aerosol-assisted chemical vapor deposition (AACVD). Scanning electron microscopy showed the morphology to be rough, composed of both micro and nano sized protrusions. Mechanical testing showed that after impingement from 800 drops of 15 μL water (height = 1 m) or 10 g of sand grains (height = 65 cm), the CA of the transparent PTFE surface was still >150°, still demonstrating excellent superhydrophobicity. The films also showed self-cleaning and anti-corrosion properties. This one-step fabrication is a facile way of producing various kinds of transparent superhydrophobic surfaces

    The Study of Rule-Governed Behavior and Derived Stimulus Relations: Bridging the Gap

    Get PDF
    The concept of rule-governed behavior or instructional control has been widely recognized for many decades within the behavior-analytic literature. It has also been argued that the human capacity to formulate and follow increasingly complex rules may undermine sensitivity to direct contingencies of reinforcement, and that excessive reliance upon rules may be an important variable in human psychological suffering. Although the concept of rules would appear to have been relatively useful within behavior analysis, it seems wise from time to time to reflect upon the utility of even well-established concepts within a scientific discipline. Doing so may be particularly important if it begins to emerge that the existing concept does not readily orient researchers toward potentially important variables associated with that very concept. The primary purpose of this article is to engage in this reflection. In particular, we will focus on the link that has been made between rule-governed behavior and derived relational responding, and consider the extent to which it might be useful to supplement talk of rules or instructions with terms that refer to the dynamics of derived relational responding

    Informing the design of a national screening and treatment programme for chronic viral hepatitis in primary care: qualitative study of at-risk immigrant communities and healthcare professionals

    Get PDF
    n Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise statedThis paper presents independent research funded by the National Institute for Health Research (NIHR) under the Programme Grants for Applied Research programme (RP-PG-1209-10038).

    Filial obligations to elderly parents: a duty to care?

    Get PDF
    A continuing need for care for elderly, combined with looser family structures prompt the question what filial obligations are. Do adult children of elderly have a duty to care? Several theories of filial obligation are reviewed. The reciprocity argument is not sensitive to the parent–child relationship after childhood. A theory of friendship does not offer a correct parallel for the relationship between adult child and elderly parent. Arguments based on need or vulnerability run the risk of being unjust to those on whom a needs-based claim is laid. To compare filial obligations with promises makes too much of parents’ expectations, however reasonable they may be. The good of being in an unchosen relationship seems the best basis for filial obligations, with an according duty to maintain the relationship when possible. We suggest this relationship should be maintained even if one of the parties is no longer capable of consciously contributing to it. We argue that this entails a duty to care about one’s parents, not for one’s parents. This implies that care for the elderly is not in the first place a task for adult children
    corecore