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Abstract

Purpose: DNA repair deficiencies have been postulated to play a role in the development and progression of cardiovascular
disease (CVD). The hypothesis is that DNA damage accumulating with age may induce cell death, which promotes
formation of unstable plaques. Defects in DNA repair mechanisms may therefore increase the risk of CVD events. We
examined whether the joints effect of common genetic variants in 5 DNA repair pathways may influence the risk of CVD
events.

Methods: The PLINK set-based test was used to examine the association to myocardial infarction (MI) of the DNA repair
pathway in GWAS data of 866 subjects of the GENetic DEterminants of Restenosis (GENDER) study and 5,244 subjects of the
PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) study. We included the main DNA repair pathways (base
excision repair, nucleotide excision repair, mismatch repair, homologous recombination and non-homologous end-joining
(NHEJ)) in the analysis.

Results: The NHEJ pathway was associated with the occurrence of MI in both GENDER (P = 0.0083) and PROSPER (P = 0.014).
This association was mainly driven by genetic variation in the MRE11A gene (PGENDER = 0.0001 and PPROSPER = 0.002). The
homologous recombination pathway was associated with MI in GENDER only (P = 0.011), for the other pathways no
associations were observed.

Conclusion: This is the first study analyzing the joint effect of common genetic variation in DNA repair pathways and the
risk of CVD events, demonstrating an association between the NHEJ pathway and MI in 2 different cohorts.
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Introduction

Cardiovascular disease (CVD) is caused by interplay of

environmental factors and multiple predisposing genes. DNA

damage, caused by for instance oxidative stress and cigarette

smoking, has been recognized as a significant contributor to the

pathogenesis of CVD. [1,2] Mechanistically, in cells where the

DNA damage is beyond repair apoptosis is induced. [3] The effect

of this damage induced cell death is dependent on the cell type.

Death of endothelial cells is implicated in plaque erosion and

subsequent vessel thrombosis. [4] Vascular smooth muscle cell

(VSMC) death has been associated with thinning of the fibrous cap

and increasing the risk of plaque rupture. [5,6] To further

complicate matters, apoptosis is not the only response of cells to

DNA damage, also cellular senescence has been described. [7,8]

Cellular senescence is a state in which cells remain in cell cycle

arrest and in which they have lost their optimal function. With

respect to the pathogenesis of atherosclerosis, senescence of for
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instance vascular endothelial cells can result in a provasoconstric-

tor and a proinflammatory phenotype. [7] So besides cell death,

DNA damage could also increases the risk of CVD by inducing

cell senescence.

Adequate DNA repair is crucial for survival of an organism, as

the DNA is continuously exposed to various types of external

factors, like mutagenic chemicals and radiation, and endogenously

generated triggers like reactive oxygen species (ROS) and DNA

replication errors, all capable of inducing DNA damage. Human

cells possess several innate DNA repair processes to protect against

the harmful consequences of DNA damage. [9] Single-strand

DNA damage can be repaired by excision repair and mismatch

repair pathways that use the undamaged strand as template during

the repair process. For the repair of double-strand breaks other

repair mechanisms like non-homologous end-joining (NHEJ) or

homologous recombination are required. [10].

Evidence of the relation between genomic integrity and

cardiovascular disease in the ageing population has been growing

over the last years. Up to now, this evidence consists in various

forms, ranging from cellular biology studies in vascular endothelial

cells [11,12], vascular smooth muscle cells [13,14] and macro-

pahges [15], histological examination of human atherosclerotic

plaques [14,16] and animal studies in telomerase deficient mice

[17] and DNA repair defective mice. [8,18,19] In contrast, only

limited studies have focused on single nucleotide polymorphisms

(SNPs) in genes related to DNA repair processes and CVD events,

although some associations have been reported. The only SNP

with some consistent results is the Arg399Gln (rs25487) SNP in the

XRCC1 base excision repair (BER) gene which was reported to be

associated with stroke [20] and coronary atherosclerosis [21].

Other genes from the excision repair pathway such as OGG1,

XRCC3, ERCC2 (XPD) and ERCC5, were found to moderately

associated as a combined score to the risk of large artery

atherosclerotic stroke in the smoking subset of a Chinese

population [22]. The authors suggested that the individual

vulnerability to smoking-induced oxidative stress was influenced

by carriers of these SNPS.

In genome-wide association studies (GWAS) investigating the

genetic background of CVD, no association was found with SNPs

in genes related to DNA repair processes. [23,24] However,

considering the multifactorial nature of the condition, it is possible

that by a joint effect, genetic variants with small individual effect

sizes, could contribute to disease risk and are undetected in a

GWAS. [25,26] The goal of the current study was to examine

whether common genetic variants in DNA repair genes are related

to the risk of CVD events by using a gene set analysis of the 5 main

DNA repair pathways in two large representative CVD popula-

tions.

Methods

GENDER Study Population
The design of the GENetic DEterminants of Restenosis

(GENDER) study has been described previously. [27] In brief,

GENDER included 3,104 consecutive unrelated symptomatic

patients treated successfully by PCI for angina. The study protocol

conforms to the Declaration of Helsinki and was approved by the

ethics committees of each participating institution. Written

informed consent was obtained from each participant before the

PCI procedure. Experienced operators, using a radial or femoral

approach, performed standard angioplasty and stent placement.

During the study, no drug-eluting stents were used. Blood samples

were collected at the index procedure for DNA isolation. During a

follow-up period of 9 months, the endpoint clinical restenosis,

defined as renewed symptoms requiring target vessel revascular-

ization (TVR) either by repeated PCI or CABG, by death from

cardiac causes or myocardial infarction (MI) not attributable to

another coronary event than the target vessel, was recorded.

Furthermore, of each patient the occurrence of MI or stroke prior

to inclusion into the study, as well as during the follow up period,

was recorded. For this study the combination of prevalent and

incident MI or stroke was analyzed.

PROSPER Study Population
The design and population of the PROSPective study for the

Elderly at Risk (PROSPER) has been described previously. [28]

PROSPER is a prospective multicenter randomized placebo-

controlled trial to assess whether treatment with pravastatin

diminishes the risk of major vascular events in elderly individuals.

Between December 1997 and May 1999, subjects were screened

and enrolled in Scotland (Glasgow), Ireland (Cork), and The

Netherlands (Leiden). Men and women aged 70–82 years were

recruited if they had pre-existing vascular disease or increased risk

of such disease because of smoking, hypertension, or diabetes. A

total number of 5,804 subjects were randomly assigned to

pravastatin or placebo. In this study several cardiovascular

endpoints were evaluated during a mean follow-up of 3.2 years;

the primary endpoint consisted of a composite of fatal/non-fatal

MI or fatal/non-fatal stroke. Secondary and tertiary endpoints

included stroke and MI separately, all-cause mortality and death

due to a vascular cause. [29] The institutional ethics review boards

of all centers approved the protocol, and all participants gave

written informed consent. The protocol was consistent with the

Declaration of Helsinki. For the current study we combined the

incident events,myocardial infarction and stroke, that occurred

during the follow-up period with the prevalent events that

occurred before inclusion into PROSPER, to obtain a lifetime

risk for these events.

Genotyping
In GENDER, a GWAS was performed in 325 cases of

restenosis and 630 controls matched by gender, age, and some

confounding clinical variables for restenosis in the GENDER study

such as total occlusion, diabetes, current smoking and residual

stenosis. [30] Genotyping was performed using the Illumina

Human 610-Quad Beadchips following manufacturer’s instruc-

tions.. After stringent quality control, bad performing samples (call

rate ,99%) and assays (call rate ,95%, minor allele frequency

,1% and deviation from Hardy-Weinberg equilibrium) were

excluded from further analysis. The final dataset consisted of 866

individuals (295 cases, 571 controls) and 556,099 SNPs.

In PROSPER, a GWAS was performed using Illumina Human

660-Quad Beadchips following manufacturer’s instructions. After

stringent quality control, bad performing samples and assays were

excluded from further analysis. Genotypic data was available in

5,244 subjects and a total of 557,192 SNPs [31].

Both datasets were imputed using MaCH software [32] up to

,2.5 million SNPs based on the HapMap Phase I+II CEU release

22 (hg18/build36) reference.

Gene Set Analysis
We analyzed SNPs within a 10-kb window around the genes

encoding proteins belonging to the 5 DNA repair pathways

described in the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway database [33,34]; the BER pathway, the

nucleotide excision repair (NER) pathway, the mismatch repair

(MMR) pathway, the homologous recombination pathway and the

NHEJ pathway. Gene set analyses were performed with the

DNA Repair Pathways in Cardiovascular Disease
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PLINK set-based test v1.07 in a case-control setting. [35] In the

first step of this test, a single SNP analysis of all SNPs within the set

is performed. Subsequently, a mean SNP statistic is calculated

from the single SNP statistics of a maximum amount of SNPs

below a certain P-value threshold. For the current study this

threshold was set on 0.20 to ensure that all SNPs with minor effect

will be analyzed. If SNPs are not independent, i.e. the LD

(expressed in R2) is above a certain threshold, the SNP with the

lowest P-value in the single SNP analysis is selected. This analysis

is repeated with 10,000 simulated SNP sets, in which the

phenotype status of the individuals is permuted. An empirical P-

value for the SNP set is computed by calculating the number of

times the test statistic of the simulated SNP sets exceeds that of the

original SNP set. For the set-based analysis of this study, the

parameters were set to P-value threshold ,0.20, R2 threshold

,0.5, and maximum number of SNPs = 99999. The associations

were considered significant, after correction for the 5 analyzed

pathways, if the P-value ,0.01 (0.05/5). For the pathway analysis

we only used the genotyped GWAS sets of both studies, since

imputed SNPs were obtained based on their LD pattern with the

genotyped SNPs and the LD threshold of the set-based analysis

corrects for this, making their added value minimal.

Results

Participant characteristics of the two study populations are

presented in table 1. The main differences in the baseline

characteristics between the two study populations are the mean

age of the participants (GENDER; 62.5 years, PROSPER; 75.3

years) and the proportion of women (GENDER; 27%, PROS-

PER; 52%) Moreover, diabetes and complaints of stable angina

pectoris were more frequent in GENDER, whereas a history of

hypertension was more frequent in PROSPER. The incidence of

MI in GENDER was 45% and in PROSPER 22%.

Of the 5 selected DNA repair pathways, as described by the

KEGG pathway database, the NER pathway was the largest one

(44 genes), (Table S1), while the NHEJ pathway was the smallest

(13 genes). The BER pathway consisted of 35 genes, the MMR

pathway of 23 genes and the homologous recombination pathway

of 28 genes.

The set-based analysis of the 5 pathway sets in the GENDER

population resulted in a significant association of the homologous

recombination pathway with MI (P = 0.011) and the combined

endpoint of MI or stroke (P = 0.0039) (Table 2). A significant

association with the same endpoints was also found for the NHEJ

pathway (P = 0.0083 for MI and P = 0.0089 for MI or stroke). No

significant association of any of the DNA repair pathways was

found with stroke alone.

Analysis in the PROSPER dataset resulted in an association of

the NHEJ pathway with MI (P = 0.014). A borderline significant

association of the BER pathway with MI was also observed

(P = 0.049). The other pathways did not show significant

associations in PROSPER (Table 2).

To determine by which genes the association of the NHEJ

pathway with MI was driven, we examined the SNP set from each

gene of this pathway separately. We found that the association was

driven by several genes from this pathway. In GENDER the

XRCC4 gene demonstrated a borderline significant association

(P = 0.055) and in PROSPER the genes PRKDC (P = 0.029) and

LIG4 (P = 0.030) were individually associated with MI. The

strongest association was found with the MRE11A gene in both

GENDER (P = 0.0001) and PROSPER (P = 0.0017), driven by 3

and 2 SNPs, respectively, which differ between the studies

(Table 3).

By using imputed data we performed in silico fine mapping of

the individual SNPs in the MRE11A genetic region on chromo-

some 11 (Figure 1). Within the range of 10 Kb around the

MRE11A gene genotypic data of 104 SNPs were available. We

identified 8 sets of SNPs that were in high LD (R2.0.8) but only

one set (10 SNPs) associated with MI in both GENDER and

PROSPER (P = 0.0033 and P = 0.0023 respectively). This set

contained the top SNP in MRE11A in PROSPER (rs2155209),

that was identified in the individual gene analysis (Table 4). This

SNP is located in a DNase I hypersensitivity site (UCSC genome

browsers database [36]). The promotor 2.0 Prediction Server [37]

reported that the region surrounding rs2155209 is not a promotor

region. In addition, the is-rSNP algorithm [38] reported that the

DNA binding affinity of three transcription factors is significantly

affected by rs2155209 (LM221 P = 0.014, estrogen receptor 2

(ESR2) P = 0.028 and LM168 P = 0.037). Unfortunately,

rs2155209 is not reported in three publically available eQTL

databases (mRNA by SNP browser [39,40], VarySysDB [41] and

the eQTL database of the Pritchard lab [42]).

To explore whether the found associations were caused by

specific subgroups we analyzed the NHEJ pathway in male and

female patients, smokers and non-smokers and in patients with

and without diabetes separately. Moreover, in the PROSPER

study we also performed the analyses in the pravastatin and

placebo group. No clear associations were detected in these

subgroups (Table S2).

Table 1. Baseline characteristics and endpoints of the
GENDER and PROSPER studies.

GENDER
N = 866

PROSPER
N = 5,244

Baseline characteristics

Age (years) 62.5610.8 75.363.4

Male gender (N) 634 (73) 2,524 (48)

Current smoking (N) 216 (25) 1,392 (27)

History of diabetes (N) 177 (20) 544 (10)

History of hypertension (N) 349 (40) 3,257 (62)

History of angina (N) 288 (68) 1,424 (27)

History of myocardial infarction (N) 365 (42) 708 (14)

Total cholesterol (mmol/L) 4.961.0a 5.760.9

Body mass index (kg/m2) 27.063.7 26.864.2

Statin treatment 465 (54) 2,605 (50)

Endpoints

Myocardial infarctionb 389 (45) 1145 (22)

Strokeb 49 (6) 731 (14)

Myocardial infarction or strokeb 416 (48) 1714 (33)

Clinical restenosisc 295 (34) NA

All cause mortality 237 (27)d 548 (11)c

Vascular mortalityc NA 266 (5)

Data are presented as mean 6 SD or number (%).
aCholesterol levels available in only 177 patients.
bBefore inclusion or during follow-up period.
cDuring follow-up period.
dDuring follow up of 10 years after inclusion in GENDER.
doi:10.1371/journal.pone.0056262.t001
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Discussion

The current study is the first to use a DNA repair pathway

approach for the identification of new candidate genes related to

cardiovascular outcomes. We show that genetic variation in

several of these genes are indeed associated with cardiovascular

related endpoints and that the joint analyses of these genetic

markers demonstrates a significant association of the NHEJ

pathway with prevalent and incident MI in two study populations.

Variation in the gene encoding meiotic recombination 11

homolog A (MRE11A) drives the association.

This is the first study that demonstrates a relation between the

NHEJ pathway and MI or even with CVD. This particular DNA

repair pathway is mainly involved in the repair of double-strand

breaks (DSBs), which are considered to have the highest risk of

evoking deleterious events, such as chromosomal translocations,

cancer and cell death. The main driver of this association,

MRE11A, is a highly conserved protein, existing in vivo as a

dimer, forms together with RAD50 and NBS1 the MRN complex.

Table 2. Set-based analysis of DNA repair pathways in the GENDER and PROSPER study populations.

MIa Strokea MI or Strokea

Pathway Genes SNPs SNPs P SNPs P SNPs P

GENDERb N = 389/477 N = 49/817 N = 416/450

Base excision 35 315 37 0.48 36 0.47 37 0.59

Nucleotide excision 44 401 57 0.38 49 0.34 60 0.38

Mismatch repair 23 285 39 0.34 40 0.42 47 0.35

Homologous recombination 28 418 64 0.011 51 0.71 60 0.0039

Non-homologous end joining 13 137 19 0.0084 14 0.43 19 0.0089

PROSPERb N = 1,145/4,099 N = 731/4,513 N = 1,714/3,530

Base excision 35 298 43 0.049 42 0.39 39 0.43

Nucleotide excision 44 392 62 0.34 57 0.47 49 0.49

Mismatch repair 23 285 39 0.43 33 0.46 31 0.91

Homologous recombination 28 426 61 0.14 42 0.49 51 0.24

Non-homologous end joining 13 144 19 0.014 30 0.35 22 0.11

The SNPs per endpoint indicate the number of independent SNPs that passed the test constrains (P,0.2 and R2,0.5) and were thus jointly analyzed in 10,000
permutations.
aBefore inclusion or during follow-up period. MI, myocardial infarction.
bCases/controls.
doi:10.1371/journal.pone.0056262.t002

Table 3. Results of the gene set analysis of the non-homologous end joining pathway with myocardial infarction in GENDER and
PROSPER.

GENDER PROSPER

Gene SNPs
Sig.
SNPs P (gene) Top SNP MAF OR P (SNP) SNPs

Sig.
SNPs P (gene) Top SNP MAF OR P (SNP)

XRCC5 19 3 0.23 rs3821107 0.24 0.79 0.04 22 1 0.89 rs828704 0.20 0.93 0.19

NHEJ1 15 1 0.55 rs7588654 0.03 0.65 0.14 15 0 1.00

XRCC4 29 4 0.055 rs13178127 0.05 2.02 0.001 30 4 0.38 rs35271 0.14 1.15 0.039

RAD50 8 0 1.00 – 10 1 0.52 rs2237060 0.44 1.07 0.13

POLM 4 2 0.12 rs11769882 0.25 0.79 0.040 4 1 0.26 rs11769882 0.22 0.93 0.14

PRKDC 14 1 0.69 rs7003908 0.34 1.16 0.14 14 4 0.026 rs10109984 0.38 1.15 0.005

POLL 3 0 1.00 – 3 1 0.28 rs3730477 0.21 1.09 0.14

DCLRE1C 8 1 0.22 rs12572872 0.23 1.24 0.06 8 0 1.00

DNTT 9 1 0.35 rs1923703 0.12 0.80 0.14 9 0 1.00

MRE11A 14 3 0.0001 rs535801 0.31 1.52 0.00006 13 2 0.0017 rs2155209 0.35 0.86 0.002

FEN1 5 0 1.00 – 5 1 0.27 rs695867 0.35 0.80 0.10

LIG4 7 3 0.31 rs9520823 0.30 1.21 0.07 7 3 0.030 rs1151403 0.42 0.87 0.003

XRCC6 2 0 1.00 – 4 1 0.45 rs17002523 0.01 1.34 0.16

SNPs, total number of SNPs per gene; Sig.SNPs indicate the number of SNPs that passed the test constrains (P,0.2 and R2,0.5) and were thus jointly analyzed in 10,000
permutations; OR odds ratio; P, p-value; MAF, minor allele frequency.
doi:10.1371/journal.pone.0056262.t003
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[43] The MRN complex has a critical role in the recognition of

DNA damage lesions or the chromatin alterations that follow

DNA damage [3] and a key role in the cellular response to DSBs.

[44] Moreover, the MRN complex has been implicated in

telomere maintenance, meiosis, DNA replication and checkpoint

activation. [45–47] Genetic variation in MRE11A has previously

been associated with several types of cancer [48–50] and antaxia-

telangiectasis-like disease. [51] To our knowledge, no association

of this gene with CVD events has yet been described, also not in

the previous GWAS on CVD. [23,52,53] The SNP rs2155209,

significantly associated with MI in both of our study populations,

has been associated with an 1.5-fold increased risk of bladder

cancer, although the authors of that study suggest that it might has

been a false-positive finding. [49] This MRE11A SNP is located in

the 39UTR of the gene, and the possible functional effect has not

yet been studied.

When examining the LD structure of MRE11A, we found that

the structure is not conform the expected LD block formation,

meaning that nearby SNPs are organized into regions of high LD

separated by short segments of very low LD. This discontinuous

LD structure is not uncommon, and has been described before for

this gene. [54] Allen-Brady et al. [54] describe 4 tagging SNPs

together accounting for 99% of the genetic variance within the

gene region. In the current study the genetic coverage of the gene

was more thorough (104 SNPs compared to 11 in the former

study), resulting in 8 tagging SNPs. Interestingly, one of the 4

described tagging SNPs, rs556477, is in very high LD (R2 = 0.92)

with our top SNP rs2155209. It is unknown whether rs2155209

has any direct functional effects. That this SNP is located in a

DNase I hypersensitivity site, which often associated with cis-

regulatory sequences, including promoters, insulators, enhancers

and locus control regions, increases the likelihood that rs2155209

influences one of these features and thereby exerting its clinical

effects, although this remains to be proven. Another method of

predicting the possible regulatory abilities of non-coding SNPs is

the in silico rSNP algorithm [38]. This approach indicated that

rs2155209 affects binding of ERS2. The estrogen receptor 2

belongs to a family of nuclear receptor transcription factors,

activating transcription upon binding to specific DNA sequences.

Moreover, the SNP was associated with LM221 and LM168, two

conserved motifs in the human genome described to be involved in

gene regulation, likely serving as insulators. [55] Wet lab

Figure 1. Fine mapping from DNA damage through the identification of an associated DNA repair pathway, the responsible gene in
this pathway, to the single nucleotide polymorphism (SNP).
doi:10.1371/journal.pone.0056262.g001

Table 4. Genomic region of MRE11A divided in LD blocks for the association with myocardial infarction.

GENDER PROSPER

Set SNPs R2 Tagging SNP MAF* OR (95% CI) P OR (95% CI) P

1 10 0.91 rs2155209 0,36 0.74 (0.61–0.91) 0,0033 0.86 (0.78–0.96 0,0023

2 10 0,90 rs535801 0,31 1.52 (1.24–1.87) 0,000059 1.00 (0.90–1.11) 0.94

3 17 0.88 rs1270146 0.43 1.32 (1.09–1.60) 0.0049 1.02 (0.93–1.13) 0.63

4 13 0.91 rs529126 0.26 1.44 (1.16–1.80) 0.00090 1.02 (0.91–1.12) 0.71

5 5 0.85 rs499952 0.35 1.32 (1.08–1.61) 0.0059 1.03 (0.92–1.12) 0.54

6 4 0.91 rs13447720 0.23 0.94 (0.75–1.18) 0.57 1.18 (1.05–1.30) 0.0027

7 18 0.91 rs10765682 0.09 0.91 (0.65–1.27) 0.58 1.01 (0.87–1.20) 0.95

8 18 1.00 rs12788248 0.01 1.22 (0.43–3.49) 0.71 1.02 (0.58–1.72) 0.95

other** 9 –

R2 indicates lowest LD between SNPs within the set.
Tagging SNP is a genotyped SNP with the lowest P-value per set.
*MAF, minor allele frequency in GENDER.
**SNPs not in LD with other SNPs within the gene.
doi:10.1371/journal.pone.0056262.t004
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confirmation of these bioinformatic predictions will be necessary

before definite conclusions can be drawn from these findings.

Cigarette smoking is considered to be an important risk factor in

atherosclerotic vascular disease and it is a well-known external

factor associated with DNA damage, like single- and double strand

breaks and the formation of oxidative DNA-adducts. [56,57] The

association of the NHEJ pathway with MI, demonstrated in the

current study, could indicate that this pathway is the underlying

mechanism of the strong relation between smoking and CVDs.

However, this hypothesis could not be confirmed in subgroup

analyses. Whether this absence of association is caused by lack of

power of the subgroup analysis, or because the underlying

mechanism causing MI is not through smoking, is uncertain.

Moreover, the hypothesis that patients with diabetes mellitus have

increased oxidative stress which could lead to DNA damage

[58,59], could also not be confirmed in our population. However,

considering that the incidence of diabetes was 20% in GENDER

and only 10% in PROSPER, there was not enough power to

detect a small effect. Furthermore, we cannot exclude that another

DNA repair pathway than NHEJ might be responsible for the

DNA repair in diabetic patients, but considering the small

subgroup size and the fact that the other DNA repair pathways

were not significantly associated in the complete populations, we

did not perform further analyses for these pathways. The subgroup

analysis did demonstrate that the association of the NHEJ pathway

with MI was possibly driven by the male subjects, since in

PROSPER no association was found in female subjects. Although

in GENDER a similar trend was observed, these results were not

significant.

The strength of gene set analysis, opposed to GWAS analysis, is

that it tests the joint effect of multiple individual SNPs within a

larger set. Considering the a priori small effect size of the

individual SNPs on complex disease endpoints, like MI, analysis of

the joint effect of multiple markers, in this study comprising

complete DNA repair pathways, will increase the likelihood of

finding biological plausible associations.

Several possible limitations to our study have to be mentioned.

For the current study we performed the pathway analysis using the

PLINK software. [60] Other software packages have been

described, although to date none has been proven to be clearly

superior to the others. Gui and colleagues compared 7 tests

analyzing the WTCCC Crohn’s Disease dataset. [61] One of their

overall conclusions was that the set-based test in PLINK was the

most powerful algorithm. Another study, applying PLINK set-

based test, Global test, GRASS and SNP ratio test, for the analysis

of three pathways regarding human longevity observed similar

results with the different tests. [62] Although other software

packages could lead to different results, the fact that our fine

mapping strategy led to the identification of a single LD block

associated in two independent populations, increased the likeli-

hood of a true positive association.

The 5 DNA repair pathways analyzed were derived from the

publically available KEGG database [34]. The KEGG database is

however not the only database providing biological pathways and

there is no consensus on the best database. In our opinion these

particular pathways were more elaborately described by KEGG

than in other databases (for instance Reactome or BioCarta).

Moreover, only the KEGG database provided a description of all

5 DNA repair pathways. Since the overlap of certain pathways of

different databases is substantial, we decided only to test the DNA

repair pathways described by KEGG. [33] It is important to

realize that probably none of these databases provide a perfect

representation of the actual biological mechanism, simple because

our current knowledge is not that far evolved yet. Likely not all

genes incorporated within the current pathways directly influence

the actual DNA repair process of interest. These unrelated gene

product could therefore interfere with the actual associations,

however to what extent this is the case in the current study remains

unknown.

As stated above, DNA damage and DNA damage repair are

associated with cancer. Since we are interested in the effects of

DNA damage repair on clinical events other than cancer, and

because the two included study populations are of rather old age,

especially PROSPER, we cannot exclude that the competing risk

of cancer related mortality and CVD events have led to a selection

bias of the patients. Therefore, it could be possible that the role of

DNA repair pathways is being underestimated. However, since we

cannot correct for this potential selection bias, this remains

speculative. Another potential confounder is age. The GENDER

study is considerably younger than the PROSPER cohort, possibly

explaining part of the different results of both studies. However,

since in the set-based analysis of PLINK correction for confound-

ers is not possible, the actual magnitude of the influence of age on

the current results remains therefore uncertain.

In conclusion, with this study we demonstrate that genetic

variation in the NHEJ pathway of the human DNA repair

machinery, and specifically genetic variation in the MRE11A gene,

is associated with the occurrence of MI. Results of this study need

to be validated by functional studies to further elucidate the precise

mechanistic role of NHEJ in atherosclerotic lesion formation.
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