139 research outputs found
Workshop to identify critical windows of exposure for children's health: immune and respiratory systems work group summary.
Fetuses, infants, and juveniles (preadults) should not be considered simply "small adults" when it comes to toxicological risk. We present specific examples of developmental toxicants that are more toxic to children than to adults, focusing on effects on the immune and respiratory systems. We describe differences in both the pharmacokinetics of the developing immune and respiratory systems as well as changes in target organ sensitivities to toxicants. Differential windows of vulnerability during development are identified in the context of available animal models. We provide specific approaches to directly investigate differential windows of vulnerability. These approaches are based on fundamental developmental biology and the existence of discrete developmental processes within the immune and respiratory systems. The processes are likely to influence differential developmental susceptibility to toxicants, resulting in lifelong toxicological changes. We also provide a template for comparative research. Finally, we discuss the application of these data to risk assessment
Air pollution exposure during critical time periods in gestation and alterations in cord blood lymphocyte distribution: a cohort of livebirths
<p>Abstract</p> <p>Background</p> <p>Toxic exposures have been shown to influence maturation of the immune system during gestation. This study investigates the association between cord blood lymphocyte proportions and maternal exposure to air pollution during each gestational month.</p> <p>Methods</p> <p>Cord blood was analyzed using a FACSort flow cytometer to determine proportions of T lymphocytes (CD3<sup>+ </sup>cells and their subsets, CD4<sup>+ </sup>and CD8<sup>+</sup>), B lymphocytes (CD19<sup>+</sup>) and natural killer (NK) cells. Ambient air concentrations of 12 polycyclic aromatic hydrocarbons (PAH) and particulate matter < 2.5 micrometer in diameter (PM<sub>2.5</sub>) were measured using fixed site monitors. Arithmetic means of these pollutants, calculated for each gestational month, were used as exposure metrics. Data on covariates were obtained from medical records and questionnaires. Multivariable linear regression models were fitted to estimate associations between monthly PAH or PM<sub>2.5 </sub>and cord blood lymphocytes, adjusting for year of birth and district of residence and, in further models, gestational season and number of prior live births.</p> <p>Results</p> <p>The adjusted models show significant associations between PAHs or PM<sub>2.5 </sub>during early gestation and increases in CD3<sup>+ </sup>and CD4<sup>+ </sup>lymphocytes percentages and decreases in CD19<sup>+ </sup>and NK cell percentages in cord blood. In contrast, exposures during late gestation were associated with decreases in CD3<sup>+ </sup>and CD4<sup>+ </sup>fractions and increases in CD19<sup>+ </sup>and NK cell fractions. There was no significant association between alterations in lymphocyte distribution and air pollution exposure during the mid gestation.</p> <p>Conclusions</p> <p>PAHs and PM<sub>2.5 </sub>in ambient air may influence fetal immune development via shifts in cord blood lymphocytes distributions. Associations appear to differ by exposure in early versus late gestation.</p
Induction of Asthma and the Environment: What We Know and Need to Know
The prevalence of asthma has increased dramatically over the last 25 years in the United States and in other nations as a result of ill-defined changes in living conditions in modern society. On 18 and 19 October 2004 the U.S. Environmental Protection Agency and the National Institute of Environmental Health Sciences sponsored the workshop “Environmental Influences on the Induction and Incidence of Asthma” to review current scientific evidence with respect to factors that may contribute to the induction of asthma. Participants addressed two broad questions: a) What does the science suggest that regulatory and public health agencies could do now to reduce the incidence of asthma? and b) What research is needed to improve our understanding of the factors that contribute to the induction of asthma and our ability to manage this problem? In this article (one of four articles resulting from the workshop), we briefly characterize asthma and its public health and economic impacts, and intervention strategies that have been successfully used to prevent induction of asthma in the workplace. We conclude with the findings of seven working groups that focus on ambient air, indoor pollutants (biologics), occupational exposures, early life stages, older adults, intrinsic susceptibility, and lifestyle. These groups found strong scientific support for public health efforts to limit in utero and postnatal exposure to cigarette smoke. However, with respect to other potential types of interventions, participants noted many scientific questions, which are summarized in this article. Research to address these questions could have a significant public health and economic impact that would be well worth the investment
Hospitalisation with Infection, Asthma and Allergy in Kawasaki Disease Patients and Their Families: Genealogical Analysis Using Linked Population Data
Background: Kawasaki disease results from an abnormal immunological response to one or more infectious triggers. We hypothesised that heritable differences in immune responses in Kawasaki disease-affected children and their families would result in different epidemiological patterns of other immune-related conditions. We investigated whether hospitalisation for infection and asthma/allergy were different in Kawasaki disease-affected children and their relatives. Methods/Major Findings: We used Western Australian population-linked health data from live births (1970-2006) to compare patterns of hospital admissions in Kawasaki disease cases, age- and sex-matched controls, and their relatives. There were 295 Kawasaki disease cases and 598 age- and sex-matched controls, with 1,636 and 3,780 relatives, respectively. Compared to controls, cases were more likely to have been admitted at least once with an infection (cases, 150 admissions (50.8%) vs controls, 210 admissions (35.1%); odds ratio (OR) = 1.9, 95% confidence interval (CI) 1.4-2.6, P = 7.2×10-6), and with asthma/allergy (cases, 49 admissions (16.6%) vs controls, 42 admissions (7.0%); OR = 2.6, 95% CI 1.7-4.2, P = 1.3×10-5). Cases also had more admissions per person with infection (cases, median 2 admissions, 95% CI 1-5, vs controls, median 1 admission, 95% CI 1-4, P = 1.09×10-5). The risk of admission with infection was higher in the first degree relatives of Kawasaki disease cases compared to those of controls, but the differences were not significant. Conclusion: Differences in the immune phenotype of children who develop Kawasaki disease may influence the severity of other immune-related conditions, with some similar patterns observed in relatives. These data suggest the influence of shared heritable factors in these families
Temporal omics analysis in Syrian hamsters unravel cellular effector responses to moderate COVID-19
In COVID-19, immune responses are key in determining disease severity. However, cellular mechanisms at the onset of inflammatory lung injury in SARS-CoV-2 infection, particularly involving endothelial cells, remain ill-defined. Using Syrian hamsters as a model for moderate COVID-19, we conduct a detailed longitudinal analysis of systemic and pulmonary cellular responses, and corroborate it with datasets from COVID-19 patients. Monocyte-derived macrophages in lungs exert the earliest and strongest transcriptional response to infection, including induction of pro-inflammatory genes, while epithelial cells show weak alterations. Without evidence for productive infection, endothelial cells react, depending on cell subtypes, by strong and early expression of anti-viral, pro-inflammatory, and T cell recruiting genes. Recruitment of cytotoxic T cells as well as emergence of IgM antibodies precede viral clearance at day 5 post infection. Investigating SARS-CoV-2 infected Syrian hamsters thus identifies cell type-specific effector functions, providing detailed insights into pathomechanisms of COVID-19 and informing therapeutic strategies
Effects of environmental pollutants on the reproduction and welfare of ruminants
Anthropogenic pollutants comprise a wide range of synthetic organic compounds and heavy metals, which are dispersed throughout the environment, usually at low concentrations. Exposure of ruminants, as for all other animals, is unavoidable and while the levels of exposure to most chemicals are usually too low to induce any physiological effects, combinations of pollutants can act additively or synergistically to perturb multiple physiological systems at all ages but particularly in the developing foetus. In sheep, organs affected by pollutant exposure include the ovary, testis, hypothalamus and pituitary gland and bone. Reported effects of exposure include changes in organ weight and gross structure, histology and gene and protein expression but these changes are not reflected in changes in reproductive performance under the conditions tested. These results illustrate the complexity of the effects of endocrine disrupting compounds on the reproductive axis, which make it difficult to extrapolate between, or even within, species. Effects of pollutant exposure on the thyroid gland, immune, cardiovascular and obesogenic systems have not been shown explicitly, in ruminants, but work on other species suggests that these systems can also be perturbed. It is concluded that exposure to a mixture of anthropogenic pollutants has significant effects on a wide variety of physiological systems, including the reproductive system. Although this physiological insult has not yet been shown to lead to a reduction in ruminant gross performance, there are already reports indicating that anthropogenic pollutant exposure can compromise several physiological systems and may pose a significant threat to both reproductive performance and welfare in the longer term. At present, many potential mechanisms of action for individual chemicals have been identified but knowledge of factors affecting the rate of tissue exposure and of the effects of combinations of chemicals on physiological systems is poor. Nevertheless, both are vital for the identification of risks to animal productivity and welfare
A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (me/cfs) and sickness behavior
It is of importance whether myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a variant of sickness behavior. The latter is induced by acute infections/injury being principally mediated through proinflammatory cytokines. Sickness is a beneficial behavioral response that serves to enhance recovery, conserves energy and plays a role in the resolution of inflammation. There are behavioral/symptomatic similarities (for example, fatigue, malaise, hyperalgesia) and dissimilarities (gastrointestinal symptoms, anorexia and weight loss) between sickness and ME/CFS. While sickness is an adaptive response induced by proinflammatory cytokines, ME/CFS is a chronic, disabling disorder, where the pathophysiology is related to activation of immunoinflammatory and oxidative pathways and autoimmune responses. While sickness behavior is a state of energy conservation, which plays a role in combating pathogens, ME/CFS is a chronic disease underpinned by a state of energy depletion. While sickness is an acute response to infection/injury, the trigger factors in ME/CFS are less well defined and encompass acute and chronic infections, as well as inflammatory or autoimmune diseases. It is concluded that sickness behavior and ME/CFS are two different conditions
- …