136 research outputs found

    Mineralogical and Chemical Characteristics of Some Natural Jarosites

    Get PDF
    This paper presents a detailed study of the mineralogical, microscopic, thermal, and spectral characteristics of jarosite and natrojarosite minerals. Systematic mineralogic and chemical examination of a suite of 32 natural stoichiometric jarosite and natrojarosite samples from diverse supergene and hydrothermal environments indicates that there is only limited solid solution between Na and K at low temperatures, which suggests the presence of a solvus in the jarosite-natrojarosite system at temperatures below about 140 °C. The samples examined in this study consist of either end members or coexisting end-member pairs of jarosite and natrojarosite. Quantitative electron-probe microanalysis data for several natural hydrothermal samples show only end-member compositions for individual grains or zones, and no detectable alkali-site deficiencies, which indicates that there is no hydronium substitution within the analytical uncertainty of the method. In addition, there is no evidence of Fe deficiencies in the natural hydrothermal samples. Hydronium-bearing jarosite was detected in only one relatively young supergene sample suggesting that terrestrial hydronium-bearing jarosites generally are unstable over geologic timescales. Unit-cell parameters of the 20 natural stoichiometric jarosites and 12 natural stoichiometric natrojarosites examined in this study have distinct and narrow ranges in the a- and c-cell dimensions. There is no overlap of these parameters at the 1r level for the two end-member compositions. Several hydrothermal samples consist of fine-scale (2–10 lm) intimate intergrowths of jarosite and natrojarosite, which could have resulted from solid-state diffusion segregation or growth zoning due to variations in the Na/K activity ratio of hydrothermal solutions

    Mineralogical and Chemical Characteristics of Some Natural Jarosites

    Get PDF
    This paper presents a detailed study of the mineralogical, microscopic, thermal, and spectral characteristics of jarosite and natrojarosite minerals. Systematic mineralogic and chemical examination of a suite of 32 natural stoichiometric jarosite and natrojarosite samples from diverse supergene and hydrothermal environments indicates that there is only limited solid solution between Na and K at low temperatures, which suggests the presence of a solvus in the jarosite-natrojarosite system at temperatures below about 140 °C. The samples examined in this study consist of either end members or coexisting end-member pairs of jarosite and natrojarosite. Quantitative electron-probe microanalysis data for several natural hydrothermal samples show only end-member compositions for individual grains or zones, and no detectable alkali-site deficiencies, which indicates that there is no hydronium substitution within the analytical uncertainty of the method. In addition, there is no evidence of Fe deficiencies in the natural hydrothermal samples. Hydronium-bearing jarosite was detected in only one relatively young supergene sample suggesting that terrestrial hydronium-bearing jarosites generally are unstable over geologic timescales. Unit-cell parameters of the 20 natural stoichiometric jarosites and 12 natural stoichiometric natrojarosites examined in this study have distinct and narrow ranges in the a- and c-cell dimensions. There is no overlap of these parameters at the 1r level for the two end-member compositions. Several hydrothermal samples consist of fine-scale (2–10 lm) intimate intergrowths of jarosite and natrojarosite, which could have resulted from solid-state diffusion segregation or growth zoning due to variations in the Na/K activity ratio of hydrothermal solutions

    Combined strong and weak lensing analysis of 28 clusters from the Sloan Giant Arcs Survey

    Full text link
    We study the mass distribution of a sample of 28 galaxy clusters using strong and weak lensing observations. The clusters are selected via their strong lensing properties as part of the Sloan Giant Arcs Survey (SGAS) from the Sloan Digital Sky Survey (SDSS). Mass modelling of the strong lensing information from the giant arcs is combined with weak lensing measurements from deep Subaru/Suprime-cam images to primarily obtain robust constraints on the concentration parameter and the shape of the mass distribution. We find that the concentration c_vir is a steep function of the mass, c_vir \propto M_vir^-0.59\pm0.12, with the value roughly consistent with the lensing-bias-corrected theoretical expectation for high mass (10^15 h^-1 M_sun) clusters. However, the observationally inferred concentration parameters appear to be much higher at lower masses (10^14 h^-1 M_sun), possibly a consequence of the modification to the inner density profiles provided by baryon cooling. The steep mass-concentration relation is also supported from direct stacking analysis of the tangential shear profiles. In addition, we explore the two-dimensional shape of the projected mass distribution by stacking weak lensing shear maps of individual clusters with prior information on the position angle from strong lens modelling, and find significant evidence for a large mean ellipticity with the best-fit value of e = 0.47 \pm 0.06 for the mass distribution of the stacked sample. We find that the luminous cluster member galaxy distribution traces the overall mass distribution very well, although the distribution of fainter cluster galaxies appears to be more extended than the total mass.Comment: 29 pages, 15+9 figures, 7 tables, accepted for publication in MNRA

    Two Lensed Lyman-alpha Emitting Galaxies at z~5

    Full text link
    We present observations of two strongly lensed z5z\sim5 Lyman-α\alpha Emitting (LAE) galaxies that were discovered in the Sloan Giant Arcs Survey (SGAS). We identify the two sources as SGAS J091541+382655, at z=5.200z=5.200, and SGAS J134331+415455 at z=4.994z=4.994. We measure their AB magnitudes at (i,z)=(23.34±0.09,23.29±0.13(i,z)=(23.34\pm0.09,23.29\pm0.13) mags and (i,z)=(23.78±0.18,24.240.16+0.18(i,z)=(23.78\pm0.18,24.24^{+0.18}_{-0.16}) mags, and the rest-frame equivalent widths of the Lyman-α\alpha emission at 25.3±4.125.3\pm4.1\AA~and 135.6±20.3135.6\pm20.3\AA~for SGAS J091541+382655 and SGAS J134331+415455, respectively. Each source is strongly lensed by a massive galaxy cluster in the foreground, and the magnifications due to gravitational lensing are recovered from strong lens modeling of the foreground lensing potentials. We use the magnification to calculate the intrinsic, unlensed Lyman-α\alpha and UV continuum luminosities for both sources, as well as the implied star formation rates (SFR). We find SGAS J091541+382655 and SGAS J134341+415455 to be galaxies with (LLyα_{Ly-\alpha}, LUV)(0.6_{UV})\leq(0.6LLyα,2_{Ly-\alpha}^{*}, 2LUV_{UV}^{*}) and (LLyα_{Ly-\alpha}, LUV)=(0.5_{UV})=(0.5LLyα,0.9_{Ly-\alpha}^{*}, 0.9LUV_{UV}^{*}), respectively. Comparison of the spectral energy distributions (SEDs) of both sources against stellar population models produces estimates of the mass in young stars in each galaxy: we report an upper limit of Mstars7.92.5+3.7×107_{stars} \leq 7.9^{+3.7}_{-2.5} \times 10^{7} M_{\sun} h_{0.7}^{-1} for SGAS J091531+382655, and a range of viable masses for SGAS J134331+415455 of 2×1082\times10^{8} M_{\sun} h_{0.7}^{-1} < Mstars<6×109_{stars} < 6\times10^{9} M_{\sun} h_{0.7}^{-1}.Comment: 10 pages, 8 figures, emulate apj format, Accepted to Ap

    Cluster Lenses

    Get PDF
    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects - probing the properties of the background lensed galaxy population - which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe - as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.Comment: About 120 pages - Published in Open Access at: http://www.springerlink.com/content/j183018170485723/ . arXiv admin note: text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author

    Hot gas flows on global and nuclear galactic scales

    Get PDF
    Since its discovery as an X-ray source with the Einstein Observatory, the hot X-ray emitting interstellar medium of early-type galaxies has been studied intensively, with observations of improving quality, and with extensive modeling by means of numerical simulations. The main features of the hot gas evolution are outlined here, focussing on the mass and energy input rates, the relationship between the hot gas flow and the main properties characterizing its host galaxy, the flow behavior on the nuclear and global galactic scales, and the sensitivity of the flow to the shape of the stellar mass distribution and the mean rotation velocity of the stars.Comment: 22 pages. Abbreviated version of chapter 2 of the book "Hot Interstellar Matter in Elliptical Galaxies", Springer 201

    Baryon content in a sample of 91 galaxy clusters selected by the South Pole Telescope at 0.2 <z < 1.25

    Get PDF
    We estimate total mass (M500), intracluster medium (ICM) mass (MICM), and stellar mass (M) in a Sunyaev–Zel’dovich effect (SZE) selected sample of 91 galaxy clusters with masses M500 2.5 × 1014 M and redshift 0.2 < z < 1.25 from the 2500 deg2 South Pole Telescope SPT-SZ survey. The total masses M500 are estimated from the SZE observable, the ICM masses MICM are obtained from the analysis of Chandra X-ray observations, and the stellar masses M are derived by fitting spectral energy distribution templates to Dark Energy Survey griz optical photometry and WISE or Spitzer near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass, and the cold baryonic fraction with cluster halo mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past ≈9 Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low-density environment or field surrounding the parent haloes, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called ‘missing baryons’ outside cluster virial regions

    The SPTPoL extended cluster survey

    Get PDF
    We describe the observations and resultant galaxy cluster catalog from the 2770 deg2 SPTpol Extended Cluster Survey (SPT-ECS). Clusters are identified via the Sunyaev-Zel'dovich (SZ) effect and confirmed with a combination of archival and targeted follow-up data, making particular use of data from the Dark Energy Survey (DES). With incomplete follow-up we have confirmed as clusters 244 of 266 candidates at a detection significance ξ ≥ 5 and an additional 204 systems at 4 4 threshold, and 10% of their measured SZ flux. We associate SZ-selected clusters, from both SPT-ECS and the SPT-SZ survey, with clusters from the DES redMaPPer sample, and we find an offset distribution between the SZ center and central galaxy in general agreement with previous work, though with a larger fraction of clusters with significant offsets. Adopting a fixed Planck-like cosmology, we measure the optical richness-SZ mass (l - M) relation and find it to be 28% shallower than that from a weak-lensing analysis of the DES data-a difference significant at the 4σ level-with the relations intersecting at λ = 60. The SPT-ECS cluster sample will be particularly useful for studying the evolution of massive clusters and, in combination with DES lensing observations and the SPT-SZ cluster sample, will be an important component of future cosmological analyses

    SPT Clusters with DES and HST Weak Lensing. I. Cluster Lensing and Bayesian Population Modeling of Multi-Wavelength Cluster Datasets

    Full text link
    We present a Bayesian population modeling method to analyze the abundance of galaxy clusters identified by the South Pole Telescope (SPT) with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). We discuss and validate the modeling choices with a particular focus on a robust, weak-lensing-based mass calibration using DES data. For the DES Year 3 data, we report a systematic uncertainty in weak-lensing mass calibration that increases from 1\% at z=0.25z=0.25 to 10\% at z=0.95z=0.95, to which we add 2\% in quadrature to account for uncertainties in the impact of baryonic effects. We implement an analysis pipeline that joins the cluster abundance likelihood with a multi-observable likelihood for the SZ, optical richness, and weak-lensing measurements for each individual cluster. We validate that our analysis pipeline can recover unbiased cosmological constraints by analyzing mocks that closely resemble the cluster sample extracted from the SPT-SZ, SPTpol~ECS, and SPTpol~500d surveys and the DES Year~3 and HST-39 weak-lensing datasets. This work represents a crucial prerequisite for the subsequent cosmological analysis of the real dataset.Comment: submitted to PR
    corecore