1,425,933 research outputs found

    San Diego Rally Speech

    Get PDF
    Speech for campaign rally at San Diego State University, October 23, 1984. Includes handwritten notes and diacritic marks.https://ir.lawnet.fordham.edu/vice_presidential_campaign_speeches_1984/1056/thumbnail.jp

    Properties of high-density matter in neutron stars

    Get PDF
    This short review aims at giving a brief overview of various states of matter that have been suggested to exist in the ultra-dense centers of neutron stars. Particular emphasis is put on the role of quark deconfinement in neutron stars and on the possible existence of compact stars made of absolutely stable strange quark matter (strange stars). Astrophysical phenomena, which distinguish neutron stars from quark stars, are discussed and the question of whether or not quark deconfinement may occur in neutron stars is investigated. Combined with observed astrophysical data, such studies are invaluable to delineate the complex structure of compressed baryonic matter and to put firm constraints on the largely unknown equation of state of such matter.Fil: Weber, Fridolin. San Diego State University; Estados Unidos. University of California; Estados UnidosFil: Contrera, Gustavo Aníbal Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Área Física Teórica; Argentina. San Diego State University; Estados UnidosFil: Orsaria, Milva Gabriela. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Área Física Teórica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. San Diego State University; Estados UnidosFil: Spinella, William. San Diego State University. Computational Sciences Research Center; Estados UnidosFil: Zubairi, Omair. San Diego State University. Computational Sciences Research Center; Estados Unido

    Word reading and translation in bilinguals: the impact of formal and informal translation expertise

    Get PDF
    Studies on bilingual word reading and translation have examined the effects of lexical variables (e.g., concreteness, cognate status) by comparing groups of non-translators with varying levels of L2 proficiency. However, little attention has been paid to another relevant factor: translation expertise (TI). To explore this issue, we administered word reading and translation tasks to two groups of non-translators possessing different levels of informal TI (Experiment 1), and to three groups of bilinguals possessing different levels of translation training (Experiment 2). Reaction-time recordings showed that in all groups reading was faster than translation and unaffected by concreteness and cognate effects. Conversely, in both experiments, all groups translated concrete and cognate words faster than abstract and non-cognate words, respectively. Notably, an advantage of backward over forward translation was observed only for low-proficiency non-translators (in Experiment 1). Also, in Experiment 2, the modifications induced by translation expertise were more marked in the early than in the late stages of training and practice. The results suggest that TI contributes to modulating inter-equivalent connections in bilingual memory.Fil: García, Adolfo Martín. Universidad Nacional de Córdoba; Argentina. Universidad Diego Portales; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; ArgentinaFil: Ibáñez Barassi, Agustín Mariano. Universidad Diego Portales; Chile. Universidad Autónoma del Caribe; Colombia. Australian Research Council; Australia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; ArgentinaFil: Huepe, David. Universidad Diego Portales; ChileFil: Houck, Alexander L.. University of Tennessee; Estados UnidosFil: Michon, Maeva. Universidad Diego Portales; ChileFil: Gelormini Lezama, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; ArgentinaFil: Chadha, Sumeer. Universidad Diego Portales; ChileFil: Rivera Rei, Álvaro. Universidad Diego Portales; Chil

    Exact finite-size scaling with corrections in the two-dimensional Ising model with special boundary conditions

    Get PDF
    The two-dimensional Ising model with Brascamp-Kunz boundary conditions has a partition function more amenable to analysis than its counterpart on a torus. This fact is exploited to exactly determine the full finite-size scaling behaviour of the Fisher zeroes of the model. Moreover, exact results are also determined for the scaling of the specific heat at criticality, for the specific-heat peak and for the pseudocritical points. All corrections to scaling are found to be analytic and the shift exponent λ\lambda does not coincide with the inverse of the correlation length exponent 1/ν1/\nu.Comment: 3 pages, LaTeX, No figures, Lattice2001(spin

    Measuring cluster peculiar velocities with the Sunyaev-Zeldovich effects: scaling relations and systematics

    Full text link
    The fluctuations in the Cosmic Microwave Background (CMB) intensity due to the Sunyaev-Zeldovich (SZ) effect are the sum of a thermal and a kinetic contribution. Separating the two components to measure the peculiar velocity of galaxy clusters requires radio and microwave observations at three or more frequencies, and knowledge of the temperature T_e of the intracluster medium weighted by the electron number density. To quantify the systematics of this procedure, we extract a sample of 117 massive clusters at redshift z=0 from an N-body hydrodynamical simulation, with 2x480^3 particles, of a cosmological volume 192 Mpc/h on a side of a flat Cold Dark Matter model with Omega_0=0.3 and Lambda=0.7. Our simulation includes radiative cooling, star formation and the effect of feedback and galactic winds from supernovae. We find that (1) our simulated clusters reproduce the observed scaling relations between X-ray and SZ properties; (2) bulk flows internal to the intracluster medium affect the velocity estimate by less than 200 km/s in 93 per cent of the cases; (3) using the X-ray emission weighted temperature, as an estimate of T_e, can overestimate the peculiar velocity by 20-50 per cent, if the microwave observations do not spatially resolve the cluster. For spatially resolved clusters, the assumptions on the spatial distribution of the ICM, required to separate the two SZ components, still produce a velocity overestimate of 10-20 per cent, even with an unbiased measure of T_e. Thanks to the large size of our cluster samples, these results set a robust lower limit of 200 km/s to the systematic errors that will affect upcoming measures of cluster peculiar velocities with the SZ effect.Comment: 14 pages, 12 figures, MNRAS, in press. Figures 3 and 4 now contain more recent observational data. Other minor revisions according to referee's comment

    A New Look at Massive Clusters: weak lensing constraints on the triaxial dark matter halos of Abell 1689, Abell 1835, & Abell 2204

    Full text link
    Measuring the 3D distribution of mass on galaxy cluster scales is a crucial test of the LCDM model, providing constraints on the nature of dark matter. Recent work investigating mass distributions of individual galaxy clusters (e.g. Abell 1689) using weak and strong gravitational lensing has revealed potential inconsistencies between the predictions of structure formation models relating halo mass to concentration and those relationships as measured in massive clusters. However, such analyses employ simple spherical halo models while a growing body of work indicates that triaxial 3D halo structure is both common and important in parameter estimates. We recently introduced a Markov Chain Monte Carlo (MCMC) method to fit fully triaxial models to weak lensing data that gives parameter and error estimates that fully incorporate the true shape uncertainty present in nature. In this paper we apply that method to weak lensing data obtained with the ESO/MPG Wide-Field Imager for galaxy clusters A1689, A1835, and A2204, under a range of Bayesian priors derived from theory and from independent X-ray and strong lensing observations. For Abell 1689, using a simple strong lensing prior we find marginalized mean parameter values M_200 = (0.83 +- 0.16)x10^15 M_solar/h and C=12.2 +- 6.7, which are marginally consistent with the mass-concentration relation predicted in LCDM. The large error contours that accompany our triaxial parameter estimates more accurately represent the true extent of our limited knowledge of the structure of galaxy cluster lenses, and make clear the importance of combining many constraints from other theoretical, lensing (strong, flexion), or other observational (X-ray, SZ, dynamical) data to confidently measure cluster mass profiles. (Abridged)Comment: 21 pages, 10 figures, accepted for publication in MNRA

    New Constraints on the Complex Mass Substructure in Abell 1689 from Gravitational Flexion

    Full text link
    In a recent publication, the flexion aperture mass statistic was found to provide a robust and effective method by which substructure in galaxy clusters might be mapped. Moreover, we suggested that the masses and mass profile of structures might be constrained using this method. In this paper, we apply the flexion aperture mass technique to HST ACS images of Abell 1689. We demonstrate that the flexion aperture mass statistic is sensitive to small-scale structures in the central region of the cluster. While the central potential is not constrained by our method, due largely to missing data in the central 0.5^\prime of the cluster, we are able to place constraints on the masses and mass profiles of prominent substructures. We identify 4 separate mass peaks, and use the peak aperture mass signal and zero signal radius in each case to constrain the masses and mass profiles of these substructures. The three most massive peaks exhibit complex small-scale structure, and the masses indicated by the flexion aperture mass statistic suggest that these three peaks represent the dominant substructure component of the cluster (7×1014h1M\sim 7\times 10^{14}h^{-1}M_\odot). Their complex structure indicates that the cluster -- far from being relaxed -- may have recently undergone a merger. The smaller, subsidiary peak is located coincident with a group of galaxies within the cluster, with mass 1×1014h1M\sim 1\times10^{14}h^{-1}M_\odot. These results are in excellent agreement with previous substructure studies of this cluster.Comment: 18 pages, 10 figures, MNRAS accepted (7 Dec 2010

    Stabilization of 2D Quantum Gravity by branching interactions

    Get PDF
    In this paper the stabilization of 2D quantum Gravity by branching interactions is considered. The perturbative expansion and the first nonperturbative term of the stabilized model are the same than the unbounded matrix model which define pure Gravity, but it has new nonperturbative effects that survives in the continuum limit.Comment: 12 pages,late

    A Bayesian approach to discrete object detection in astronomical datasets

    Full text link
    A Bayesian approach is presented for detecting and characterising the signal from discrete objects embedded in a diffuse background. The approach centres around the evaluation of the posterior distribution for the parameters of the discrete objects, given the observed data, and defines the theoretically-optimal procedure for parametrised object detection. Two alternative strategies are investigated: the simultaneous detection of all the discrete objects in the dataset, and the iterative detection of objects. In both cases, the parameter space characterising the object(s) is explored using Markov-Chain Monte-Carlo sampling. For the iterative detection of objects, another approach is to locate the global maximum of the posterior at each iteration using a simulated annealing downhill simplex algorithm. The techniques are applied to a two-dimensional toy problem consisting of Gaussian objects embedded in uncorrelated pixel noise. A cosmological illustration of the iterative approach is also presented, in which the thermal and kinetic Sunyaev-Zel'dovich effects from clusters of galaxies are detected in microwave maps dominated by emission from primordial cosmic microwave background anisotropies.Comment: 20 pages, 12 figures, accepted by MNRAS; contains some additional material in response to referee's comment
    corecore