Abstract

Measuring the 3D distribution of mass on galaxy cluster scales is a crucial test of the LCDM model, providing constraints on the nature of dark matter. Recent work investigating mass distributions of individual galaxy clusters (e.g. Abell 1689) using weak and strong gravitational lensing has revealed potential inconsistencies between the predictions of structure formation models relating halo mass to concentration and those relationships as measured in massive clusters. However, such analyses employ simple spherical halo models while a growing body of work indicates that triaxial 3D halo structure is both common and important in parameter estimates. We recently introduced a Markov Chain Monte Carlo (MCMC) method to fit fully triaxial models to weak lensing data that gives parameter and error estimates that fully incorporate the true shape uncertainty present in nature. In this paper we apply that method to weak lensing data obtained with the ESO/MPG Wide-Field Imager for galaxy clusters A1689, A1835, and A2204, under a range of Bayesian priors derived from theory and from independent X-ray and strong lensing observations. For Abell 1689, using a simple strong lensing prior we find marginalized mean parameter values M_200 = (0.83 +- 0.16)x10^15 M_solar/h and C=12.2 +- 6.7, which are marginally consistent with the mass-concentration relation predicted in LCDM. The large error contours that accompany our triaxial parameter estimates more accurately represent the true extent of our limited knowledge of the structure of galaxy cluster lenses, and make clear the importance of combining many constraints from other theoretical, lensing (strong, flexion), or other observational (X-ray, SZ, dynamical) data to confidently measure cluster mass profiles. (Abridged)Comment: 21 pages, 10 figures, accepted for publication in MNRA

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019