253 research outputs found

    Lard detection based on fatty acids profile using comprehensive gas chromatography hyphenated with time-of-flight mass spectrometry.

    Get PDF
    Comprehensive gas chromatography hyphenated with time-of-flight mass spectrometry was applied to detect the differences between lard (LA) and three other commonly animal-derived fats, namely cattle fat (CA), chicken fat (CF) and goat fat (GF). Combination of two different microbore columns (SLB-5ms and DB-wax) allowed the discrimination of lard from other animal fats by three fatty acid methyl esters (FAMEs) constituents involving methyl trans-9,12,15-octadecatrienoate (C18:3 n3t), methyl 11,14,17-eicosatrienoate (C20:3 n3t) and methyl 11,14-eicosadienoate (C20:2 n6). The FAME profiles could be used as a basis for discriminating lard from other animal fats in food authentication process

    Success Rate and Utility of Ultrasound-guided Synovial Biopsies in Clinical Practice

    Get PDF
    OBJECTIVE: The utility of synovial biopsy in increasing our understanding of the pathogenesis of inflammatory arthropathies, as well as in evaluating treatments, is well established. Ultrasound (US) allows synovial assessment and therefore assists in biopsying synovial tissue in a safe and well-tolerated manner. This study's objectives were to (1) determine the rate of success in retrieving synovial tissue using US guidance, (2) describe the indications for US-guided synovial biopsies in the clinical setting, (3) determine how frequently the synovial biopsy can lead to a clear diagnosis, and (4) assess the quality of the synovial tissue obtained using this technique. METHODS: Synovial biopsies of small and large joints were performed under US guidance between February 2007 and December 2014 using a semiautomatic core biopsy needle. The biopsy procedure was considered successful if synovial tissue was found at histological examination. RESULTS: Seventy-four patients with undifferentiated arthritis underwent 76 synovial biopsies. The success rate in retrieving synovial tissue was 81.6% (62/76). One patient taking acetyl salicylic acid at 75 mg at the time of the biopsy presented with hemarthrosis 48 h after the procedure, which resolved following simple arthrocentesis. A definitive diagnosis was achieved in 16% of the patients where synovial tissue was sampled successfully. CONCLUSION: US-guided synovial biopsies in clinical practice can be performed safely on patients with undifferentiated arthritis and with heterogeneous presentations. The rate of success in acquiring synovial tissue is high. The procedure usually retrieves quality tissue and leads to a definite diagnosis in a significant minority of patients

    Local-distortional interaction in cold-formed steel lipped channel beams under uniform bending: Experimental investigation

    Get PDF
    This paper describes a test campaign concerning the behavior and strength of cold-formed steel (CFS) lipped channel (LC) beams experiencing local-distortional (L-D) interaction made of G450-G500 high-strength steel grades. This investigation involves the performance of 20 tests on simply supported beams arranged in a “back-to-back” configuration, subjected to four-point major-axis bending and laterally restrained at the loading points. All tested specimens failed in the expected L-D interactive modes and exhibited critical distortional-to-local buckling moment ratios ranging between 1.09 and 1.46 (i.e., prone to “true L-D interaction”). The experiment results obtained and reported consist of beam (i) moment-displacement equilibrium paths, (ii) photos evidencing the evolution of the beam deformed configurations along those equilibrium paths (including the failure modes) and (iii) failure moments − it is found that these results are in good agreement with recently performed numerical simulations. Finally, the experimental failure moments obtained are compared with their estimates provided by the (i) currently codified Direct Strength Method (DSM) strength curves associated with local and distortional failures, and (ii) other available DSM-based design approaches developed to handle L-D interactive failures. This comparison provides solid evidence that the CFS specifications must include a DSM-based design approach able to handle beam L-D interactive failures − the current local and distortional design curves clearly overestimate all the experimental failure moments.The authors gratefully acknowledge the support of M Metal Pte Ltd in Singapore, for supplying the cold-formed steel beam specimens tested at The University of Hong Kong

    Regiospecific analysis of Mono and Diglycerides in Glycerolysis products by GC x GC TOF-MS.

    Get PDF
    Comprehensive bidimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOF-MS) was used for the characterization of regiospecific mono- and diglycerides (MG-DG) content in the glycerolysis products derived from five different lipids included lard (LA), sun flower seed oil (SF), corn oil (CO), butter (BU), and palm oil (PA). The combination of fast and high temperature non-orthogonal column set namely DB17ht (6 m × 0.10 mm × 0.10 μm) as the primary column and SLB-5 ms (60 cm × 0.10 mm × 0.10 μm) as the secondary column was applied in this work. System configuration involved high oven ramp temperature to obtain precise mass spectral identification and highest effluent’s resolution. 3-Monopalmitoyl-sn-glycerol (MG 3-C16) was the highest concentration in LA, BU and PA while monostearoyl-sn-glycerol (MG C18) in CO and 1,3-dilinoleol-rac-glycerol (DG C18:2c) in SF. Principal component analysis accounted 82% of variance using combination of PC1 and PC2. The presence of monostearoyl-sn-glycerol (MG C18), 3-Monopalmitoyl-sn-glycerol (MG 3-C16), 1,3-dilinoleol-rac-glycerol (DG C18:2c), 1,3-dipalmitoyl-glycerol (DG 1,3-C16), and 1,3-dielaidin (DG C18:1t) caused differentiation of the samples tested

    Interaction between Hydrogenase Maturation Factors HypA and HypB Is Required for [NiFe]-Hydrogenase Maturation

    Get PDF
    The active site of [NiFe]-hydrogenase contains nickel and iron coordinated by cysteine residues, cyanide and carbon monoxide. Metal chaperone proteins HypA and HypB are required for the nickel insertion step of [NiFe]-hydrogenase maturation. How HypA and HypB work together to deliver nickel to the catalytic core remains elusive. Here we demonstrated that HypA and HypB from Archaeoglobus fulgidus form 1∶1 heterodimer in solution and HypA does not interact with HypB dimer preloaded with GMPPNP and Ni. Based on the crystal structure of A. fulgidus HypB, mutants were designed to map the HypA binding site on HypB. Our results showed that two conserved residues, Tyr-4 and Leu-6, of A. fulgidus HypB are required for the interaction with HypA. Consistent with this observation, we demonstrated that the corresponding residues, Leu-78 and Val-80, located at the N-terminus of the GTPase domain of Escherichia coli HypB were required for HypA/HypB interaction. We further showed that L78A and V80A mutants of HypB failed to reactivate hydrogenase in an E. coli ΔhypB strain. Our results suggest that the formation of the HypA/HypB complex is essential to the maturation process of hydrogenase. The HypA binding site is in proximity to the metal binding site of HypB, suggesting that the HypA/HypB interaction may facilitate nickel transfer between the two proteins

    Preparation and reactivity of half-sandwich organic azide complexes of osmium

    Get PDF
    Organic azide complexes [Os(η5-C5H5)(κ1-N3R)(PPh3)P(OR1)3]BPh4(1, 2) [R = CH2C6H5(a), CH2C6H4-4-CH3(b), CH(CH3)C6H5(c), C6H5(d); R1 = Me (1), Et (2)] were prepared by allowing bromo-compounds [OsBr(η5-C5H5)(PPh3)P(OR1)3] to react first with AgOTf and then with an excess of azide in toluene. Benzylazide complexes reacted in solution leading to imine derivatives [Os(η5-C5H5)κ1-NHC(R2)Ar(PPh3)P(OR1)3]BPh4(3, 4) [R2 = H (a, b), CH3(c); Ar = C6H5, C6H4-4-CH3; R1 = Me (3), Et (4)]. Phenylazide, on the other hand, reacted in solution affording the dinuclear dinitrogen complex [Os(η5-C5H5)(PPh3)[P(OMe)3]2(μ-N2)](BPh4)2(5). Depending on the nature of the R substituent, the reaction of the p-cymene complex [OsCl2(η6-p-cymene)(PPh3)P(OEt)3] with RN3yielded imine [OsCl(η6-p-cymene)κ1-NHC(H)ArP(OEt)3]BPh4(6) (Ar = C6H4-4-CH3) and amine derivatives [OsCl(η6-p-cymene)(κ1-NH2C6H5)P(OEt)3]BPh4(7). The complexes were characterised spectroscopically (IR,1H,31P,15N NMR) and by the X-ray crystal structure determination of [Os(η5-C5H5)(PPh3)[P(OMe)3]2(μ-N2)](BPh4)2(5)

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0\u20135 and 5\u201315 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10\ub0C (mean = 3.0 \ub1 2.1\ub0C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 \ub1 2.3\ub0C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler ( 120.7 \ub1 2.3\ub0C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore