50 research outputs found

    Advances in multiangle satellite remote sensing of speciated airborne particulate matter and association with adverse health effects: from MISR to MAIA

    Get PDF
    Inhalation of airborne particulate matter (PM) is associated with a variety of adverse health outcomes. However, the relative toxicity of specific PM types—mixtures of particles of varying sizes, shapes, and chemical compositions—is not well understood. A major impediment has been the sparse distribution of surface sensors, especially those measuring speciated PM. Aerosol remote sensing from Earth orbit offers the opportunity to improve our understanding of the health risks associated with different particle types and sources. The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA’s Terra satellite has demonstrated the value of near-simultaneous observations of backscattered sunlight from multiple view angles for remote sensing of aerosol abundances and particle properties over land. The Multi-Angle Imager for Aerosols (MAIA) instrument, currently in development, improves on MISR’s sensitivity to airborne particle composition by incorporating polarimetry and expanded spectral range. Spatiotemporal regression relationships generated using collocated surface monitor and chemical transport model data will be used to convert fractional aerosol optical depths retrieved from MAIA observations to near-surface PM_(10), PM_(2.5), and speciated PM_(2.5). Health scientists on the MAIA team will use the resulting exposure estimates over globally distributed target areas to investigate the association of particle species with population health effects

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    2017 Di Girolamo

    No full text
    2017 annual report for Larry Di Girolamo Blue Waters Professor allocation.NSF OCI-0725070NSF ACI-1238993Ope

    2015 Di Girolamo Blue Waters Professor Report

    No full text
    2015 annual report for Larry Di Girolamo Blue Waters Professor allocation.NSF OCI-0725070NSF ACI-1238993Ope

    On the detection of cirrus clouds from satellite measurements

    No full text
    A thorough literature review of cloud algorithm validation strategies is presented, with particular emphasis on the problems of detecting cirrus clouds. To further advance our cirrus detection capabilities, a new cloud detection technique is proposed for the Multi-angle Imaging Spectro-Radiometer (MISR), which is scheduled to be on the first platform of the Earth Observing System. Radiative Transfer simulations have been used to develop a Band-Differenced Angular Signature technique. This new technique takes the difference between two solar spectral reflectances as a function of view angle. The resulting angular signature is used to discriminate between high- and low-level clouds and surface reflectance anomalies. This technique, coupled with a Predetermined Clear Sky Threshold developed in this study for MISR, can detect cirrus clouds of visible optical thickness >>0.5 without any a priori knowledge of atmospheric conditions. Other techniques that can be used with MISR (i.e. stereo) are also discussed

    Investigation on Montmorillonite-Phenol Interactions

    No full text
    Note:The Multi-angle Imaging SpectroRadiometer (MISR) will be the first satellite Earth observing instrument to make routine multi-angle measurements of the same target area within a time span of several minutes. The algorithms that will analyze MISR data require information on the state of cloudiness within the imagery. This thesis develops the cloud detection algorithms for the pre- and post-navigated imagery. For pre-navigated imagery, the difficulties in detecting clouds in the presence of land/water boundaries are overcome by using a logical combination of the 0.86 um reflectance and a new observable, D, that combines the 0.86 um and 0.67 um reflectance so as to provide better cloud detection than more popular land observables. […]Le "Multi-angle lmaging SpectroRadiometer (MISR)" sera le premier instrument d'observation terrestre à prendre, de façon routinière, des mesures d'une même surface cible à partir de plusieurs angles durant un lapse de temps de seulement quelques minutes. Les algorithmes qui serviront à analyser les données provenant du MISR ont besoin d'informations concernant la couverture nuageuse dans le domaine observe. L'objectif de cette thèse est de développer des algorithmes servant à détecter la présence de nuages. Ceux-ci pourront servir dans la production d'images satellitaires pré- et post-positionnement. Pour les images pré-positionnement, la réflectivité a 0.86 um et une nouvelle variable, D, qui combine les réflectivités a 0.86 um et a 0.67 um, sont utilisées dans le but de solutionner les problèmes relies à l'identification des frontières eau-terre. […

    Instantaneous Top-of-Atmosphere Albedo Comparison between CERES and MISR over the Arctic

    No full text
    The top-of-atmosphere (TOA) albedo is one of the key parameters in determining the Arctic radiation budget, with continued validation of its retrieval accuracy still required. Based on three years (2007, 2015, 2016) of summertime (May⁻September) observations from the Clouds and the Earth’s Radiant Energy System (CERES) and the Multi-angle Imaging SpectroRadiometer (MISR), collocated instantaneous albedos for overcast ocean and snow/ice scenes were compared within the Arctic. For samples where both instruments classified the scene as overcast, the relative root-mean-square (RMS) difference between the sample albedos grew as the solar zenith angle (SZA) increased. The RMS differences that were purely due to differential Bidirectional Reflectance Factor (BRF) anisotropic corrections ( σ A D M ) were estimated to be less than 4% for overcast ocean and overcast snow/ice when the SZA ≤ 70°. The significant agreement between the CERES and MISR strongly increased our confidence in using the instruments overcast cloud albedos in Arctic studies. Nevertheless, there was less agreement in the cloud albedos for larger solar zenith angles, where the RMS differences of σ A D M reached 13.5% for overcast ocean scenes when the SZA > 80°. Additionally, inconsistencies between the CERES and MISR scene identifications were examined, resulting in an overall recommendation for improvements to the MISR snow/ice mask and a rework of the MISR Albedo Cloud Designation (ACD) field by incorporating known strengths of the standard MISR cloud masks
    corecore