43 research outputs found

    ELPIS-JP: a dataset of local-scale daily climate change scenarios for Japan

    Get PDF
    We developed a dataset of local-scale daily climate change scenarios for Japan (called ELPIS-JP) using the stochastic weather generators (WGs) LARS-WG and, in part, WXGEN. The ELPIS-JP dataset is based on the observed (or estimated) daily weather data for seven climatic variables (daily mean, maximum and minimum temperatures; precipitation; solar radiation; relative humidity; and wind speed) at 938 sites in Japan and climate projections from the multi-model ensemble of global climate models (GCMs) used in the coupled model intercomparison project (CMIP3) and multi-model ensemble of regional climate models form the Japanese downscaling project (called S-5-3). The capability of the WGs to reproduce the statistical features of the observed data for the period 1981–2000 is assessed using several statistical tests and quantile–quantile plots. Overall performance of the WGs was good. The ELPIS-JP dataset consists of two types of daily data: (i) the transient scenarios throughout the twenty-first century using projections from 10 CMIP3 GCMs under three emission scenarios (A1B, A2 and B1) and (ii) the time-slice scenarios for the period 2081–2100 using projections from three S-5-3 regional climate models. The ELPIS-JP dataset is designed to be used in conjunction with process-based impact models (e.g. crop models) for assessment, not only the impacts of mean climate change but also the impacts of changes in climate variability, wet/dry spells and extreme events, as well as the uncertainty of future impacts associated with climate models and emission scenarios. The ELPIS-JP offers an excellent platform for probabilistic assessment of climate change impacts and potential adaptation at a local scale in Japan

    Genotyping-by-Sequencing and Ecological Niche Modeling Illuminate Phylogeography, Admixture, and Pleistocene Range Dynamics in Quaking Aspen (Populus Tremuloides)

    Get PDF
    Populus tremuloides is the widest‐ranging tree species in North America and an ecologically important component of mesic forest ecosystems displaced by the Pleistocene glaciations. Using phylogeographic analyses of genome‐wide SNPs (34,796 SNPs, 183 individuals) and ecological niche modeling, we inferred population structure, ploidy levels, admixture, and Pleistocene range dynamics of P. tremuloides, and tested several historical biogeographical hypotheses. We found three genetic lineages located mainly in coastal–Cascades (cluster 1), east‐slope Cascades–Sierra Nevadas–Northern Rockies (cluster 2), and U.S. Rocky Mountains through southern Canadian (cluster 3) regions of the P. tremuloides range, with tree graph relationships of the form ((cluster 1, cluster 2), cluster 3). Populations consisted mainly of diploids (86%) but also small numbers of triploids (12%) and tetraploids (1%), and ploidy did not adversely affect our genetic inferences. The main vector of admixture was from cluster 3 into cluster 2, with the admixture zone trending northwest through the Rocky Mountains along a recognized phenotypic cline (Utah to Idaho). Clusters 1 and 2 provided strong support for the “stable‐edge hypothesis” that unglaciated southwestern populations persisted in situ since the last glaciation. By contrast, despite a lack of clinal genetic variation, cluster 3 exhibited “trailing‐edge” dynamics from niche suitability predictions signifying complete northward postglacial expansion. Results were also consistent with the “inland dispersal hypothesis” predicting postglacial assembly of Pacific Northwestern forest ecosystems, but rejected the hypothesis that Pacific‐coastal populations were colonized during outburst flooding from glacial Lake Missoula. Overall, congruent patterns between our phylogeographic and ecological niche modeling results and fossil pollen data demonstrate complex mixtures of stable‐edge, refugial locations, and postglacial expansion within P. tremuloides. These findings confirm and refine previous genetic studies, while strongly supporting a distinct Pacific‐coastal genetic lineage of quaking aspen

    The photon PDF from high-mass Drell Yan data at the LHC

    Get PDF
    Achieving the highest precision for theoretical predictions at the LHC requires the calculation of hard-scattering cross-sections that include perturbative QCD corrections up to (N)NNLO and electroweak (EW) corrections up to NLO. Parton distribution functions (PDFs) need to be provided with matching accuracy, which in the case of QED effects involves introducing the photon parton distribution of the proton, xγ(x,Q2)x\gamma(x,Q^2). In this work a determination of the photon PDF from fits to recent ATLAS measurements of high-mass Drell-Yan dilepton production at s=8\sqrt{s}=8 TeV is presented. This analysis is based on the xFitter framework, and has required improvements both in the APFEL program, to account for NLO QED effects, and in the aMCfast interface to account for the photon-initiated contributions in the EW calculations within MadGraph5_aMC@NLO. The results are compared with other recent QED fits and determinations of the photon PDF, consistent results are found

    Pacific climate variability and the possible impact on global surface CO2 flux

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Climate variability modifies both oceanic and terrestrial surface CO2 flux. Using observed/assimilated data sets, earlier studies have shown that tropical oceanic climate variability has strong impacts on the land surface temperature and soil moisture, and that there is a negative correlation between the oceanic and terrestrial CO2 fluxes. However, these data sets only cover less than the most recent 20 years and are insufficient for identifying decadal and longer periodic variabilities. To investigate possible impacts of interannual to interdecadal climate variability on CO2 flux exchange, the last 125 years of an earth system model (ESM) control run are examined.</p> <p>Results</p> <p>Global integration of the terrestrial CO2 flux anomaly shows variation much greater in amplitude and longer in periodic timescale than the oceanic flux. The terrestrial CO2 flux anomaly correlates negatively with the oceanic flux in some periods, but positively in others, as the periodic timescale is different between the two variables. To determine the spatial pattern of the variability, a series of composite analyses are performed. The results show that the oceanic CO2 flux variability peaks when the eastern tropical Pacific has a large sea surface temperature anomaly (SSTA). By contrast, the terrestrial CO2 flux variability peaks when the SSTA appears in the central tropical Pacific. The former pattern of variability resembles the ENSO-mode and the latter the ENSO-modoki<sup>1</sup>.</p> <p>Conclusions</p> <p>Our results imply that the oceanic and terrestrial CO2 flux anomalies may correlate either positively or negatively depending on the relative phase of these two modes in the tropical Pacific.</p

    The Bits of Silence : Redundant Traffic in VoIP

    Get PDF
    Human conversation is characterized by brief pauses and so-called turn-taking behavior between the speakers. In the context of VoIP, this means that there are frequent periods where the microphone captures only background noise – or even silence whenever the microphone is muted. The bits transmitted from such silence periods introduce overhead in terms of data usage, energy consumption, and network infrastructure costs. In this paper, we contribute by shedding light on these costs for VoIP applications. We systematically measure the performance of six popular mobile VoIP applications with controlled human conversation and acoustic setup. Our analysis demonstrates that significant savings can indeed be achievable - with the best performing silence suppression technique being effective on 75% of silent pauses in the conversation in a quiet place. This results in 2-5 times data savings, and 50-90% lower energy consumption compared to the next better alternative. Even then, the effectiveness of silence suppression can be sensitive to the amount of background noise, underlying speech codec, and the device being used. The codec characteristics and performance do not depend on the network type. However, silence suppression makes VoIP traffic network friendly as much as VoLTE traffic. Our results provide new insights into VoIP performance and offer a motivation for further enhancements, such as performance-aware codec selection, that can significantly benefit a wide variety of voice assisted applications, as such intelligent home assistants and other speech codec enabled IoT devices.Peer reviewe

    QCD analysis of W- and Z-boson production at Tevatron

    Get PDF
    Recent measurements of the W-boson charge asymmetry and of the Z-boson production cross sections, performed at the Tevatron collider in Run II by the D0 and CDF collaborations, are studied using the HERAFitter framework to assess their impact on the proton parton distribution functions (PDFs). The Tevatron measurements, together with deep-inelastic scattering data from HERA, are included in a QCD analysis performed at next-to-leading order, and compared to the predictions obtained using other PDF sets from different groups. Good agreement between measurements and theoretical predictions is observed. The Tevatron data provide significant constraints on the d-valence quark distribution

    Automatic Detection of User Abilities through the SmartAbility Framework

    Get PDF
    This paper presents a proposed smartphone application for the unique SmartAbility Framework that supports interaction with technology for people with reduced physical ability, through focusing on the actions that they can perform independently. The Framework is a culmination of knowledge obtained through previously conducted technology feasibility trials and controlled usability evaluations involving the user community. The Framework is an example of ability-based design that focuses on the abilities of users instead of their disabilities. The paper includes a summary of Versions 1 and 2 of the Framework, including the results of a two-phased validation approach, conducted at the UK Mobility Roadshow and via a focus group of domain experts. A holistic model developed by adapting the House of Quality (HoQ) matrix of the Quality Function Deployment (QFD) approach is also described. A systematic literature review of sensor technologies built into smart devices establishes the capabilities of sensors in the Android and iOS operating systems. The review defines a set of inclusion and exclusion criteria, as well as search terms used to elicit literature from online repositories. The key contribution is the mapping of ability-based sensor technologies onto the Framework, to enable the future implementation of a smartphone application. Through the exploitation of the SmartAbility application, the Framework will increase technology amongst people with reduced physical ability and provide a promotional tool for assistive technology manufacturers

    Exploring the potential of Google Earth as a communication and engagement tool in collaborative Natural Flood Management planning

    Get PDF
    This paper considers the development and evaluation of a Google Earth “virtual globe” tour for communicating spatial data and engaging stakeholders in the early stages of a natural flood management (NFM) planning scenario, using a rural UK river catchment that suffered significant flooding in 2007. With a range of diverse stakeholder interests to consider, early engagement and the development of trust before decision‐making are essential for the long‐term success of such catchment‐wide projects. A local catchment group was consulted to identify key information requirements, and from this a “virtual globe” tour was created. The process involved specialist skills and expert leadership, but the end result was accessible to a range of audiences. User evaluation indicated that it was easy to navigate and can be used to stimulate interest and engage stakeholders. Participants trusted the content and valued the interactivity of the tour. It was helpful for communicating and educating participants about the catchment, the issues it faces, and the potential to incorporate NFM, particularly for those with little or no prior knowledge. More abstract information was harder to convey and there were limitations in the availability of suitable data for some variables and the in quality of satellite imagery. This exploratory research found that a Google Earth “virtual globe” tour can be a valuable tool in the initial stages of an NFM project, but there are also opportunities to use this technique in the more advanced stages of the planning process. The approach could be used as part of a wider toolkit for communication and engagement and has potential as a decision support tool in other environmental management scenarios with requirements for public participation, enabling the views of a range of participants to be captured through online distribution and to generate discussion in workshop setting

    [pain]Byte VR Storytelling & Classical Ballet

    Get PDF
    This initial stage paper focuses on the Virtual Reality (VR) experience of the [pain]Byte ballet. The live and VR experience debut October 1st 2017, as part of the Brighton digital festival. Specifically, the development of the VR environment to compliment live performance by using the same choreography to create an option capture element of the VR story telling experience. Reviewing Virtual & Alternative reality gaming & storytelling works and the use of VR for chronic pain management (Chen, Win). Does the VR experience compare to that of the live theatre for the audience? The data visualisations and VR environment will be continuations of the Network Simulator, [data]Storm 2015. We are visualising and comparing the pain pathway system to that of a social network. Linking pain signals to viral/negative messaging for some of the visuals. The main purpose of the pieces links to how “we" present ourselves online, these better or veiled versions of ourselves. For chronic pain sufferers, this can be daily activity in the real world. The paper concludes by identifying some future directions for the research project. The Ballet: [pain]Byte is a data driven dance classical ballet performance and VR (virtual reality) experience. [pain]Byte, is about chronic pain and biomedical engineering, in particular the use of implanted technology - neuromodulation (Al-Kaisey et al). Using data as a medium for storytelling, what it means to be in chronic pain. The live augmented theatre and VR experience research focuses on how an audience’s exposure and understanding are impacted by the difference mediums used for [pain]byte

    The Astropy Project: Building an inclusive, open-science project and status of the v2.0 core package

    Get PDF
    The Astropy project supports and fosters the development of open-source and openly-developed Python packages that provide commonly-needed functionality to the astronomical community. A key element of the Astropy project is the core package Astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of inter-operable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy project
    corecore