129 research outputs found

    Normative Findings for Periocular Anthropometric Measurements among Chinese Young Adults in Hong Kong

    Get PDF
    Measurement of periocular structures is of value in several clinical specialties including ophthalmology, optometry, medical and clinical genetics, oculoplastic surgery, and traumatology. Therefore we aimed to determine the periocular anthropometric norms for Chinese young adults using a noninvasive 3D stereophotography system. Craniofacial images using the 3dMDface system were acquired for 103 Chinese subjects (51 males and 52 females) between the ages of 18 and 35 years. Anthropometric landmarks were identified on these digital images according to standard definitions, and linear distances between these landmarks were calculated. It was found that ocular measurements were significantly larger in Chinese males than females for intercanthal width, biocular width, and eye fissure lengths. No gender differences were found in the eye fissure height and the canthal index which ranged between 43 and 44. Both right and left eye fissure height-length ratios were significantly larger in females. This is the first study to employ 3D stereophotogrammetry to create a database of anthropometric normative data for periocular measurements. These data would be useful for clinical interpretation of periocular pathology and serve as reference values when planning aesthetic and posttraumatic surgical interventions

    Data-based assessment of environmental controls on global marine nitrogen fixation

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 11 (2014): 691-708, doi:10.5194/bg-11-691-2014.There are a number of hypotheses concerning the environmental controls on marine nitrogen fixation (NF). Most of these hypotheses have not been assessed against direct measurements on the global scale. In this study, we use ~ 500 depth-integrated field measurements of NF covering the Pacific and Atlantic oceans to test whether the spatial variance of these measurements can be explained by the commonly hypothesized environmental controls, including measurement-based surface solar radiation, mixed layer depth, average solar radiation in the mixed layer, sea surface temperature, wind speed, surface nitrate and phosphate concentrations, surface excess phosphate (P*) concentration and subsurface minimum dissolved oxygen (in upper 500 m), as well as model-based P* convergence and atmospheric dust deposition. By conducting simple linear regression and stepwise multiple linear regression (MLR) analyses, surface solar radiation (or sea surface temperature) and subsurface minimum dissolved oxygen are identified as the predictors that explain the most spatial variance in the observed NF data, although it is unclear why the observed NF decreases when the level of subsurface minimum dissolved oxygen is higher than ~ 150 μM. Dust deposition and wind speed do not appear to influence the spatial patterns of NF on global scale. The weak correlation between the observed NF and the P* convergence and concentrations suggests that the available data currently remain insufficient to fully support the hypothesis that spatial variability in denitrification is the principal control on spatial variability in marine NF. By applying the MLR-derived equation, we estimate the global-integrated NF at 74 (error range 51–110) Tg N yr−1 in the open ocean, acknowledging that it could be substantially higher as the 15N2-assimilation method used by most of the field samples underestimates NF. More field NF samples in the Pacific and Indian oceans, particularly in the oxygen minimum zones, are needed to reduce uncertainties in our conclusion.This project was supported by the NSF Center for Microbial Oceanography: Research and Education (C-MORE) (EF-0424599), an NSF Emerging Topics in Biogeochemical Cycles grant (ETBC, AGS-1020594), and the Gordon and Betty Moore Foundation

    Genome-wide association study of proneness to anger

    Get PDF
    BACKGROUND: Community samples suggest that approximately 1 in 20 children and adults exhibit clinically significant anger, hostility, and aggression. Individuals with dysregulated emotional control have a greater lifetime burden of psychiatric morbidity, severe impairment in role functioning, and premature mortality due to cardiovascular disease. METHODS: With publically available data secured from dbGaP, we conducted a genome-wide association study of proneness to anger using the Spielberger State-Trait Anger Scale in the Atherosclerosis Risk in Communities (ARIC) study (n = 8,747). RESULTS: Subjects were, on average, 54 (range 45-64) years old at baseline enrollment, 47% (n = 4,117) were male, and all were of European descent by self-report. The mean Angry Temperament and Angry Reaction scores were 5.8 +/- 1.8 and 7.6 +/- 2.2. We observed a nominally significant finding (p = 2.9E-08, lambda = 1.027 - corrected pgc = 2.2E-07, lambda = 1.0015) on chromosome 6q21 in the gene coding for the non-receptor protein-tyrosine kinase, Fyn. CONCLUSIONS: Fyn interacts with NDMA receptors and inositol-1,4,5-trisphosphate (IP3)-gated channels to regulate calcium influx and intracellular release in the post-synaptic density. These results suggest that signaling pathways regulating intracellular calcium homeostasis, which are relevant to memory, learning, and neuronal survival, may in part underlie the expression of Angry Temperament

    Selectivity of mass extinctions: Patterns, processes, and future directions

    Get PDF
    A central question in the study of mass extinction is whether these events simply intensify background extinction processes and patterns versus change the driving mechanisms and associated patterns of selectivity. Over the past two decades, aided by the development of new fossil occurrence databases, selectivity patterns associated with mass extinction have become increasingly well quantified and their differences from background patterns established. In general, differences in geographic range matter less during mass extinction than during background intervals, while differences in respiratory and circulatory anatomy that may correlate with tolerance to rapid change in oxygen availability, temperature, and pH show greater evidence of selectivity during mass extinction. The recent expansion of physiological experiments on living representatives of diverse clades and the development of simple, quantitative theories linking temperature and oxygen availability to the extent of viable habitat in the oceans have enabled the use of Earth system models to link geochemical proxy constraints on environmental change with quantitative predictions of the amount and biogeography of habitat loss. Early indications are that the interaction between physiological traits and environmental change can explain substantial proportions of observed extinction selectivity for at least some mass extinction events. A remaining challenge is quantifying the effects of primary extinction resulting from the limits of physiological tolerance versus secondary extinction resulting from the loss of taxa on which a given species depended ecologically. The calibration of physiology-based models to past extinction events will enhance their value in prediction and mitigation efforts related to the current biodiversity crisis

    Climate warming erodes tropical reef habitat through frequency and intensity of episodic hypoxia

    Get PDF
    Climate warming threatens marine life by increasing metabolic oxygen demand while decreasing oxygen availability. Tropical species living in warm, low oxygen environments may be most at risk, but their tolerances and exposures to these stressors remain poorly documented. We evaluated habitat restrictions for two brittle star species from Caribbean coral reefs by integrating field observations, laboratory experiments and an ecophysiological model. The absence of one species from the warmest reefs results from vital activity restrictions during episodic low oxygen extremes, even though average conditions are well within physiological tolerance limits. Over the past decade, warmer temperatures have been significantly correlated with a greater frequency and intensity of hypoxic events. Continued warming will progressively exclude hypoxia-tolerant species, even if average oxygen remains constant. A warming-driven increase in frequency or intensity of low oxygen extremes could similarly accelerate habitat loss across other marine ecosystems. -- Keywords : Oxygen ; Aquatic hypoxia ; Hypoxia ; Coral reefs ; Oxygen metabolism ; Ocean temperature ; Echinoderms ; Climate change

    Coastal Upwelling Supplies Oxygen-Depleted Water to the Columbia River Estuary

    Get PDF
    Low dissolved oxygen (DO) is a common feature of many estuarine and shallow-water environments, and is often attributed to anthropogenic nutrient enrichment from terrestrial-fluvial pathways. However, recent events in the U.S. Pacific Northwest have highlighted that wind-forced upwelling can cause naturally occurring low DO water to move onto the continental shelf, leading to mortalities of benthic fish and invertebrates. Coastal estuaries in the Pacific Northwest are strongly linked to ocean forcings, and here we report observations on the spatial and temporal patterns of oxygen concentration in the Columbia River estuary. Hydrographic measurements were made from transect (spatial survey) or anchor station (temporal survey) deployments over a variety of wind stresses and tidal states during the upwelling seasons of 2006 through 2008. During this period, biologically stressful levels of dissolved oxygen were observed to enter the Columbia River estuary from oceanic sources, with minimum values close to the hypoxic threshold of 2.0 mg L−1. Riverine water was consistently normoxic. Upwelling wind stress controlled the timing and magnitude of low DO events, while tidal-modulated estuarine circulation patterns influenced the spatial extent and duration of exposure to low DO water. Strong upwelling during neap tides produced the largest impact on the estuary. The observed oxygen concentrations likely had deleterious behavioral and physiological consequences for migrating juvenile salmon and benthic crabs. Based on a wind-forced supply mechanism, low DO events are probably common to the Columbia River and other regional estuaries and if conditions on the shelf deteriorate further, as observations and models predict, Pacific Northwest estuarine habitats could experience a decrease in environmental quality

    Mouse Acetylcholinesterase Enhances Neurite Outgrowth of Rat R28 Cells Through Interaction With Laminin-1

    Get PDF
    The enzyme acetylcholinesterase (AChE) terminates synaptic transmission at cholinergic synapses by hydrolyzing the neurotransmitter acetylcholine, but can also exert ‘non-classical’, morpho-regulatory effects on developing neurons such as stimulation of neurite outgrowth. Here, we investigated the role of AChE binding to laminin-1 on the regulation of neurite outgrowth by using cell culture, immunocytochemistry, and molecular biological approaches. To explore the role of AChE, we examined fiber growth of cells overexpressing different forms of AChE, and/or during their growth on laminin-1. A significant increase of neuritic growth as compared with controls was observed for neurons over-expressing AChE. Accordingly, addition of globular AChE to the medium increased total length of neurites. Co-transfection with PRIMA, a membrane anchor of AChE, led to an increase in fiber length similar to AChE overexpressing cells. Transfection with an AChE mutant that leads to the retention of AChE within cells had no stimulatory effect on neurite length. Noticeably, the longest neurites were produced by neurons overexpressing AChE and growing on laminin-1, suggesting that the AChE/laminin interaction is involved in regulating neurite outgrowth. Our findings demonstrate that binding of AChE to laminin-1 alters AChE activity and leads to increased neurite growth in culture. A possible mechanism of the AChE effect on neurite outgrowth is proposed due to the interaction of AChE with laminin-1

    Whisker Movements Reveal Spatial Attention: A Unified Computational Model of Active Sensing Control in the Rat

    Get PDF
    Spatial attention is most often investigated in the visual modality through measurement of eye movements, with primates, including humans, a widely-studied model. Its study in laboratory rodents, such as mice and rats, requires different techniques, owing to the lack of a visual fovea and the particular ethological relevance of orienting movements of the snout and the whiskers in these animals. In recent years, several reliable relationships have been observed between environmental and behavioural variables and movements of the whiskers, but the function of these responses, as well as how they integrate, remains unclear. Here, we propose a unifying abstract model of whisker movement control that has as its key variable the region of space that is the animal's current focus of attention, and demonstrate, using computer-simulated behavioral experiments, that the model is consistent with a broad range of experimental observations. A core hypothesis is that the rat explicitly decodes the location in space of whisker contacts and that this representation is used to regulate whisker drive signals. This proposition stands in contrast to earlier proposals that the modulation of whisker movement during exploration is mediated primarily by reflex loops. We go on to argue that the superior colliculus is a candidate neural substrate for the siting of a head-centred map guiding whisker movement, in analogy to current models of visual attention. The proposed model has the potential to offer a more complete understanding of whisker control as well as to highlight the potential of the rodent and its whiskers as a tool for the study of mammalian attention

    Mandibular reconstruction with vascularised bone flaps: a systematic review over 25 years

    Get PDF
    To explore the techniques for mandibular reconstruction with composite free flaps and their outcomes, we systematically reviewed reports published between 1990 and 2015. A total of 9499 mandibular defects were reconstructed with 6178 fibular, 1380 iliac crest, 1127 composite radial, 709 scapular, 63 serratus anterior and rib, 32 metatarsal, and 10 lateral arm flaps including humerus. The failure rate was higher for the iliac crest (6.2%, 66/1059) than for fibular, radial, and scapular flaps combined (3.4%, 202/6018) (p<0.001). We evaluated rates of osteotomy, non-union, and fistulas. Implant-retained prostheses were used most often for rehabilitation after reconstruction with iliac crest (44%, 100/229 compared with 26%, 605/2295 if another flap was used) (p<0.001). There were no apparent changes in the choice of flap or in the complications reported. Although we were able to show some significant differences relating to the types of flap used, we were disappointed to find that fundamental outcomes such as the need for osteotomy, and rates of non-union and fistulas were under-reported. This review shows the need for more comprehensive and consistent reporting of outcomes to enable the comparison of different techniques for similar defects
    • …
    corecore