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Abstract

Background: Community samples suggest that approximately 1 in 20 children and adults exhibit clinically significant anger,
hostility, and aggression. Individuals with dysregulated emotional control have a greater lifetime burden of psychiatric
morbidity, severe impairment in role functioning, and premature mortality due to cardiovascular disease.

Methods: With publically available data secured from dbGaP, we conducted a genome-wide association study of proneness
to anger using the Spielberger State-Trait Anger Scale in the Atherosclerosis Risk in Communities (ARIC) study (n = 8,747).

Results: Subjects were, on average, 54 (range 45–64) years old at baseline enrollment, 47% (n = 4,117) were male, and all
were of European descent by self-report. The mean Angry Temperament and Angry Reaction scores were 5.861.8 and
7.662.2. We observed a nominally significant finding (p = 2.9E-08, l= 1.027 - corrected pgc = 2.2E-07, l= 1.0015) on
chromosome 6q21 in the gene coding for the non-receptor protein-tyrosine kinase, Fyn.

Conclusions: Fyn interacts with NDMA receptors and inositol-1,4,5-trisphosphate (IP3)-gated channels to regulate calcium
influx and intracellular release in the post-synaptic density. These results suggest that signaling pathways regulating
intracellular calcium homeostasis, which are relevant to memory, learning, and neuronal survival, may in part underlie the
expression of Angry Temperament.
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Introduction

Anger has been characterized as a complex construct encom-

passing irritability, hostility, and aggressive behavior. Its compo-

nents -- impulsive, unprovoked, and developmentally inappropri-

ate outbursts of anger – may be associated with dysregulated

emotional control or impaired neural circuits mediating emotion,

cognition, and inhibition [1,2]. Approximately 5% of children and

adults in community samples exhibit extreme levels of anger,

hostility, and aggression considered to be clinically significant [3–

5].

Further, these traits are strongly associated with a range of

psychiatric symptomatology. Behavioral dysregulation and aggres-

sion also predict psychiatric hospitalization and suicidality in

childhood and a wide range of psychiatric morbidity in adulthood

[6–11]. Moreover, dysregulated emotional control and intermit-

tent explosive disorder in adults is associated with a greater lifetime

burden of psychiatric morbidity and severe impairment in role

functioning [2,5]. Proneness to anger in the general community is

also associated with premature all-cause mortality [12], primarily

due to cardiovascular disease [13–18]. Consequently, effective

primary or secondary interventions that reduce anger, hostility,

and aggression might have a substantial public health impact on

quality of life and, ultimately, longevity.

Symptoms of deficient emotional self-regulation in adults are

familial [19] and, as recently shown in the Vietnam Era Twin
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Registry, are influenced by moderate genetic effects, particularly

on the tendency to switch from euthymia to depression or anger

[20]. A commonly used continuously-distributed measure of this

trait in children, the Child Behavior Checklist Dysregulation

Profile, has been found to be highly heritable with additive genetic

effects consistently explaining up to 67% of its variance

[3,4,21,22]. A small GWAS of this trait in children with

attention-deficit hyperactivity disorder suggested possible associa-

tions with several genes implicated in neurodevelopment, synaptic

plasticity, as well as hippocampal dependent memory and learning

[23]. Taken together, these studies suggest the role of heritable

factors in determining individual differences in the self-regulation

of emotional and cognitive neural circuits, ones that may underlie

proneness to anger, hostility, and aggression. The primary goal of

this study was to identify genetic susceptibility loci for proneness to

anger through a secondary analysis of publically-available data.

Materials and Methods

Phenotypes and genotypes were downloaded from the National

Center for Biotechnology Information (NCBI) database of

genotypes and phenotypes (dbGaP) [24] for the NHLBI funded

Atherosclerosis Risk in Communities (ARIC) Study (Accessions:

phs000280.v1.p1 and phs000090.v1.p1). In accord with the

restrictions on the use of the data defined by participant informed

consent agreements, this ARIC dataset may be used for general

research use following the approval of the ARIC Data Access

Committee and IRB approval at the approved investigators

institution. The acquisition and use of these data was approved

and overseen by the Human Subjects Institutional Review Board

at the University of Massachusetts Medical School.

Atherosclerosis Risk in Communities (ARIC) Cohort
Details regarding the design and objectives of the Atheroscle-

rosis Risk in Communities Study have been previously published

and are available online (http://www.cscc.unc.edu/ARIC/)[25].

In brief, this is a large population-based sample of 15,792

individuals ascertained from a probability sample of four U.S.

communities between 1987 and 1989. Subjects were followed

every three years for several re-assessments (1990–1992, 1993–

1995, and 1996–1998) to study the incidence and course of

atherosclerosis in men and women aged 45–64 years at the time of

initial clinic assessment.

Genotyping
Samples were genotyped on the Affymetrix Genome-Wide

Human SNP Array 6.0 at the Broad Institute Center for

Genotyping and Analysis for the Gene Environment Association

Studies initiative (GENEVA, http://www.genevastudy.org). Ge-

notypes of 12,771 ARIC participants were submitted to dbGaP

and were available for analysis. For the present analyses, we first

excluded related individuals (n = 927; 11,844 remaining); subse-

quently, subjects with missing data on the Spielberger Trait Anger

Scale (n = 599; 11,245 remaining). Twenty percent of ARIC

participants were African American (AA) by self-report and the

remaining subjects classified only as ‘‘White’’ (i.e., individuals of

European ancestry (EA)). Using the online genetic power

calculator toolset [26], we determined the statistical power to

detect association at a quantitative trait locus (QTL) to account for

at least 1% of variance in the EA subsample to be 0.81; however,

the power to detect genome-wide statistically significant associa-

tions in the AA subgroup was substantially lower, at 0.21.

Therefore, we focused exclusively on the EA sample (with

n = 2,498 excluded and n = 8,747 remaining).

Quality Control
Extensive quality control checks were conducted on the original

data and we downloaded the cleaned dataset with genotypes

flagged for chromosomal abnormalities (n = 840,606 SNPs).

Within the selected sample of 8,747 subjects, we filtered SNPs

by minor allele frequency (MAF) conditional on call rate (CR)

including SNPs with: 0.01 # MAF , 0.05 and CR .99%; 0.05 #

MAF ,0.1 and CR .97%, MAF $0.1 and CR .95%

(n = 148,142 SNPs excluded). Any SNPs found to be out of

Hardy-Weinberg Equilibrium (p,1.0E-4) were excluded from

further consideration (n = 14,821 SNPs excluded). After applying

the described quality control filters, the final sample consisted of

677,643 SNPs in 8,747 unrelated subjects.

Spielberger State-Trait Anger Scale
The Spielberger State-Trait Anger Scale is a Likert-type four-

level self-rating scale (1 = almost never, 2 = sometimes, 3 = often,

4 = almost always) [27]. Factor analysis of the Trait Anger items

have yielded two weakly correlated (r2 = 0.29) factors labeled

‘‘Angry Temperament’’ and ‘‘Angry Reaction’’ [28]. The former

refers to the propensity of individuals to express anger frequently,

with little or no provocation, and includes four items: 1) I am quick

tempered, 2) I have a fiery temper, 3) I am a hotheaded person,

and 4) I fly off the handle. In contrast, the Angry Reaction

subscale reflects frustration in response to criticism or mistreat-

ment; it also includes four items: 1) I get angry when I am slowed

down by others’ mistakes, 2) I feel annoyed when I am not given

recognition for doing good work, 3) It makes me furious when I

am criticized in front of others, and 4) I feel infuriated when I do a

good job and get a poor evaluation. The items for each subscale

are summed to generate specific scores each ranging from 4 to 16.

Temperament scores above 8, and Reaction scores above 10, are

considered to be elevated and have been assessed as risk factors for

coronary heart disease outcomes in prior analyses of these data

[14].

The Spielberger State-Trait Anger scale was first adminstered at

visit 2 (1990–1992) in 8,747 subjects and again at visit 3 (1993–

1995) in 7,246 subjects; moderate to strong test-retest reliability for

the Angry Reaction (ICC = 0.50) and the Angry Temperament

(ICC = 0.65) subscales was observed. Subjects with missing

Spielberger State-Trait Anger scale data at visit 3 (n = 1,501)

had slightly higher visit 2 scores on the Angry Temperament

(6.061.9 vs. 5.761.7, p,0.0001) but not on the Angry Reaction

(7.662.2 vs. 7.662.1, p = 0.7) subscales. To maximize the sample

size, and to avoid misclassification of Angry Temperament at visit

3, we utilized information collected at visit 2 in this report.

Statistical Analysis
All genome-wide association analyses were conducted using

PLINK [29] employing datasets downloaded and filtered as

described earlier under genotyping. To control for multiplicity in

the number of SNPs tested, we adopted the conservative

recommendation of Dudbridge et al [30] and Pe’er et al [31],

considering p-values less than 7.0E-08 to be statistically significant

genome-wide. Our primary test of association was for the additive

effects of minor allele dosage on the quantitative summary scores

of Angry Temperament and Angry Reaction (each ranging from

4-16 points) in the selected sample. To further estimate magnitude

and direction of effect, we then conducted case-control analyses

(i.e., Angry Temperament .8 vs. #8 or Angry Reaction .10 vs.

#10) for SNPs of interest from the quantitative association results.

The potential for inflation of the test statistic due to population

heterogeneity was estimated with the lambda statistic (defined as

the observed median statistical test divided by the expected

GWAS of Proneness to Anger
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median statistical test) and with quantile-quantile plots of observed

and expected p-values. To adjust for population stratification, we

conducted genome-wide association tests on the model residuals

generated for each anger phenotype regressed on the principal

components representing genetic substructure provided by the

ARIC investigators through dbGaP.

Gene Ontology (GO) Enrichment Analyses
Genetic enrichment or pathway analysis was conducted with the

INRICH pathway analysis tool for GWAS, designed for detection

of enriched association signals of linkage-disequilibrium (LD)

independent genomic regions within biologically relevant gene sets

(http://atgu.mgh.harvard.edu/inrich) [32]. Independent LD as-

sociation intervals were identified by the ‘‘clumping’’ algorithm in

PLINK [29]. This algorithm identifies genomic regions surround-

ing index SNPs (i.e. p,5E-05) defined by nearby SNPs (within

250 kb) that are in linkage disequilibrium (r2.0.4) with the index

SNP and are also nominally statistically significant (p,5E-03).

These association regions were referenced against genetic

categories defined by the Gene Ontology project (http://www.

geneontology.org/) according to known biological processes,

cellular components, and molecular function of their gene

products. For each GO term (e.g., ‘‘regulation of synaptic

plasticity’’) the number of association intervals containing genes

associated with that GO term were counted to determine if the

proportion of overlapping intervals is greater than expected by

chance through multiple permutation (n = 5,000 permutations).

The permutation procedure places each association interval at

random genomic locations but conditions on SNP/gene density to

control for potential bias associated with gene size and SNP

density.

Results

Data from 8,747 Caucasian men and women participating in

the ARIC study were included in our genome-wide association

analyses. Subjects were, on average 54.365.7 (range 45–64 years)

years old at baseline enrollment, 47% (n = 4,117) were men, and

all were of European descent by self-report. The mean Angry

Temperament and Angry Reaction scores were 5.861.8) and

7.662.2, respectively. Elevation of the Angry Reaction subscale

(.10, n = 845, 9.7%) was seen more often than elevation of the

Angry Temperament subscale (.8, n = 515, 5.9%).

Association with each anger phenotype was assessed across the

677,643 SNPs filtered by call rate conditional on minor allele

frequency and deviation from Hardy-Weinberg equilibrium. We

observed a potentially statistically significant finding (smallest

p = 2.9E-08) for Angry Temperament but not for Angry Reaction

(smallest p = 2.5E-07). The QQ plot (Figure 1) shows the

distribution of expected p-values against the observed distribution

for both Angry Temperament and Angry Reaction. Inspection of

the Angry Temperament plot clearly reveals a greater number of

significant findings than expected by chance with the distribution

of p-values being only slightly inflated (lambda = 1.027). Adjust-

ment for genetic background reduced lambda to 1.0015 and

attenuated the uppermost findings (smallest pGC = 2.2E-07) but the

departure from the diagonal in the tail of both the corrected and

uncorrected QQ plots indicates enrichment of significant associ-

ations (Figure 1).

Table 1 lists the top 38 association regions defined by an index

SNP with nominal p,5E-05 and at least one additional proximal

SNP (,250 kb) in LD (r2.0.4) and significant at p,5E-03 for the

Angry Temperament subscale. We assessed enrichment of Gene

Ontology (GO) terms overlapping with association regions using

the INRICH algorithm to control for potential biases caused by

SNP/gene density and gene size. There was evidence of

enrichment for no GO targets among the top regional associations

for Angry Reaction scores (Table 2), but we found some nominal

evidence of enrichment for 6 GO targets (Table 3) in the Angry

Temperament association regions in Table 1 (none survived

correction for the number of targets tested). Among the targets

nominally significant at p,0.05, four genes overlap and are

Figure 1. Quantile-Quantile (QQ) plot of the genome-wide association results for the Spielberger State-Trait Anger Scale subscales.
The red symbols depict results from analysis uncorrected for ancestry, the blue symbols depict results corrected for ancestry (i.e. PGC), and the dashed
red line depicts the 95% confidence interval for the distribution of results. There was no evidence of inflation of the test statistic for the Angry
Reaction scores in the uncorrected (l = 0.9998) or the corrected (l = 1.0029) analyses. For the Angry Temperament score test statistics, there was
slight inflation of the uncorrected analysis (l = 1.0272) that was further reduced with correction for genetic ancestry (l = 1.0015).
doi:10.1371/journal.pone.0087257.g001
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present in more than one target: ABAT (4-aminobutyrate

aminotransferase), FYN (Fyn oncogene related to Src, Fgr, Yes),

PDE3A (phosphodiesterase 3A, cGMP-inhibited), and VEGFC

(vascular endothelial growth factor C).

Discussion

In this study we conducted a genome-wide association study of

trait anger in a large sample of middle-aged and elderly men and

women recruited from 4 large U.S. communities. We found

evidence of genetic susceptibility for the anger trait associated with

a proclivity for unprovoked (i.e., Angry Temperament scores) but

Table 1. Genome-Wide Association Results for the Angry Temperament subscale.

Temperament Score Case-Control LD-Based Association Interval

CHR SNP A1 BP MAF Beta P-RAW P-GC* OR P SNPs Length kb Genes

6 rs2148710 T 112,228,920 0.137 0.22 2.9E-08 4.6E-07 1.26 0.0075 12 135.32 FYN

7 rs6954895 G 35,552,732 0.257 0.16 2.1E-07 4.7E-06 1.24 0.0029 7 23.96 -

6 rs2844775 A 30,287,400 0.250 –0.15 8.3E-07 7.9E-05 0.87 0.0617 31 335.03 PPP1R11,RNF39,ZNRD1,
TRIM40,TRIM31,TRIM26,
TRIM15,TRIM10,HLA-
A29.1,HCG9

6 rs670292 C 150,744,544 0.466 0.13 1.6E-06 2.2E-07 1.24 0.0009 7 31.56 IYD

11 rs16924133 A 33,281,952 0.028 0.38 1.7E-06 2.1E-05 1.79 0.0001 4 245.99 TCP11L1,HIPK3,CSTF3

10 rs12249434 A 118,288,696 0.088 0.22 4.3E-06 1.2E-05 1.39 0.0013 3 50.64 PNLIP,PNLIPRP1

4 rs6834498 A 189,802,160 0.181 –0.16 4.9E-06 1.6E-05 0.86 0.0808 9 20.41 -

20 rs6012564 G 46,975,008 0.406 0.12 6.7E-06 1.1E-05 1.25 0.0007 12 242.31 STAU1,CSE1L,ARFGEF2

16 rs1299926 T 8,778,582 0.054 0.26 7.8E-06 2.3E-05 1.54 0.0003 2 5.12 ABAT

19 rs8102754 A 34,180,880 0.454 0.12 8.3E-06 8.9E-05 1.24 0.0010 2 7.32 -

1 rs16840114 C 238,692,048 0.060 0.25 9.1E-06 6.7E-05 1.39 0.0055 2 0.55 FMN2

1 rs4628571 C 208,925,024 0.449 –0.12 1.0E-05 9.3E-05 0.83 0.0048 11 57.03 KCNH1,HHAT

20 rs238215 T 47,303,912 0.235 –0.14 1.2E-05 6.4E-06 0.79 0.0036 9 120.68 ZNFX1,STAU1,DDX27

4 rs11724215 G 89,020,656 0.070 0.23 1.3E-05 2.1E-04 1.42 0.0019 4 40.93 MEPE

6 rs782000 G 71,408,536 0.272 0.13 1.4E-05 6.0E-05 1.27 0.0006 3 149.06 SMAP1

4 rs17084746 C 52,666,560 0.011 0.55 1.8E-05 8.2E-05 1.82 0.0125 4 83.61 SPATA18

6 rs7742473 A 119,208,432 0.098 0.19 1.9E-05 2.3E-05 1.21 0.0610 5 13.40 -

20 rs1883881 T 46,999,184 0.349 –0.12 2.0E-05 1.6E-05 0.78 0.0004 12 245.59 STAU1,CSE1L, ARFGEF2

12 rs10770687 G 20,701,778 0.348 –0.12 2.3E-05 2.9E-04 0.92 0.2281 7 48.40 SLCO1C1,PDE3A

11 rs4758435 C 5,798,432 0.190 0.14 2.5E-05 9.8E-05 1.25 0.0041 2 1.28 OR52N2

1 rs2495053 C 13,912,617 0.053 0.25 2.6E-05 1.1E-04 1.35 0.0181 3 134.60 PRDM2

1 rs6668091 T 239,578,176 0.143 0.16 2.6E-05 1.7E-04 1.22 0.0221 5 33.04 RGS7

4 rs41501449 C 178,024,608 0.105 –0.18 2.7E-05 1.8E-04 0.71 0.0033 14 173.27 VEGFC

14 rs17831706 T 51,825,136 0.090 0.20 2.7E-05 3.7E-05 1.43 0.0003 3 34.52 PTGDR

1 rs10912593 A 169,454,688 0.315 0.12 3.0E-05 4.8E-05 1.20 0.0062 3 39.34 FMO2

1 rs3889128 G 53,781,820 0.235 0.13 3.1E-05 3.7E-05 1.17 0.0319 3 0.14 GLIS1

2 rs2341997 G 16,835,468 0.440 0.11 3.3E-05 1.5E-04 1.07 0.3060 2 7.48 -

9 rs7035071 C 2,069,250 0.200 –0.14 3.5E-05 2.1E-04 0.85 0.0461 2 7.86 SMARCA2

7 rs10258797 A 121,796,040 0.207 0.14 3.6E-05 3.1E-04 1.29 0.0008 4 46.00 CADPS2

12 rs215996 C 2,589,558 0.182 0.14 3.6E-05 1.9E-04 1.20 0.0203 5 17.18 CACNA1C

6 rs583807 T 4,100,791 0.081 –0.20 3.7E-05 2.0E-05 0.71 0.0094 5 65.89 -

1 rs17373189 C 172,636,384 0.157 –0.15 3.9E-05 1.7E-04 0.75 0.0026 17 358.45 RABGAP1L,GPR52

18 rs17596183 A 34,730,256 0.363 –0.11 4.1E-05 1.7E-04 0.86 0.0294 10 31.34 -

23 rs2354304 A 94,283,280 0.432 0.09 4.2E-05 7.1E-05 1.29 0.0008 12 23.20 -

23 rs2272657 A 48,203,844 0.374 0.09 4.5E-05 4.0E-04 1.22 0.0103 3 10.48 SLC38A5

23 rs543042 A 146,406,080 0.142 –0.13 4.5E-05 1.5E-05 0.72 0.0061 17 143.24 -

8 rs7843469 A 69,360,592 0.440 0.11 4.6E-05 1.5E-04 1.14 0.0420 6 23.21 -

11 rs2712799 G 74,526,864 0.379 0.11 4.8E-05 1.0E-04 1.10 0.1340 14 74.05 SLCO2B1,OR2AT4

*p-values results from phenotypes adjusted for principal components representing genetic substructure of ARIC participants.
doi:10.1371/journal.pone.0087257.t001
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not provoked (i.e., Angry Reaction scores) anger. In contrast to the

Angry Reaction results, for Angry Temperament we identified a

greater than expected number of extreme p-values and nominal

evidence of GO target enrichment.

We have previously studied mood dysregulation using data from

the ADHD sub study of the Psychiatric Genomics Consortium

(PGC) [23]. In this study of 341 referred ADHD assessed with the

Child-Behavior Checklist [23,33], we found suggestive but weak

associations with BDNF (brain-derived neurotrophic factor), it’s

preferred receptor (NTKR2, neurotrophic tyrosine kinase receptor,

type 2), and a scaffolding protein (LRRC7, leucine rich repeat

containing 7) anchoring a downstream protein kinase (CAMK2A,

calcium/calmodulin-dependent protein kinase II alpha) required

for initiation and maintenance of early-long-term potentiation

[34,35]. We also found preliminary evidence of association with

prion protein (PRNP) and it’s ligand (STIP1; stress-induced-

phosphoprotein) that together mediate astrocyte differentiation/

survival [36,37] and homeostatic function of hippocampal circuits

[38]. Disruption of STIP1-PRPN or BDNF-NTKR2 binding in

the hippocampus [39–41] impair long-term potentiation, spatial

learning, memory consolidation, and hippocampal development.

The most statistically significant association in the current study

was with rs2148710 and the Angry Temperament score in FYN.

Interestingly, the mechanisms underlying the pathways suggested

by our small studies of mood dysregulation in children are

dependent on Fyn activity. For example, post-synaptic BDNF-

NTRK2 binding activates Fyn to phosphorylate NDMA-receptors

(N-methyl-d-aspartate) and increases subsequent calcium influx

associated with long-term potentiation initiation [35,42,43]. Fyn

also phosphorylates endoplasmic reticulum inositol-1,4,5-trispho-

sphate (IP3)-gated channels to stimulate the release of intracellular

calcium [44,45] in response to both NTKR2 [35] and PRNP [46]

activity.

Loss of Fyn function in mice has also been associated with

blunted long-term potentiation at hippocampal synapses and

impaired learning and memory on the hidden platform water

maze task [47]. These findings are consistent with learning-

disordered/transactional model of explosive anger in which

lagging higher-order cognitive skills play a central role [48,49].

Specific executive functioning deficits could contribute to explosive

reactivity through inefficient encoding of previous consequences of

noncompliance, thereby interfering with the ability to anticipate

consequences of potential actions [49].

The Psychiatric Genomics Consortium (PGC) [50] has recently

published cross- disorder analyses documenting pleiotropic effects

of associated genes for psychiatric disorders that suggest a common

genetic susceptibilities that underlie psychiatric morbidity. These

pleiotropic genetic variants in the PGC analyses were enriched for

brain expression quantitative trait loci (eQTL) and more

specifically for calcium channel activity genes facilitating trans-

membrane ion diffusion (GO:0005262, calcium channel activity).

Interestingly, we also observed a nominal association with a SNP

in CACNA1C and Angry Temperament in our association analyses

(Table 1). CACNA1C encodes the a subunit of the L-type voltage-

gated calcium channel and is a strong candidate for both bipolar

disorder and general psychiatric morbidity [32,50]. Thus, our

results may suggest that regulation of calcium-dependent intracel-

lular signaling could play a role not only for psychiatric morbidity

but also for variable expression of normative symptoms such as

anger.

GO enrichment analyses suggest that there may be shared

genetic susceptibility for affect regulation and cardiovascular

disease, as well. Using these data, other groups have documented

an increased risk for coronary heart disease with an elevated

proneness to anger [13,14,17,51,52], and we have found

nominally significant (p,0.05) enrichment of genes associated

Table 2. Genome-Wide Association Results for the Angry Reaction subscale.

Reaction Score Case-Control LD-Based Association Interval

CHR SNP A1 BP MAF P-HWE Beta P-RAW P-GC* OR P SNPs Length (kb) Interval Genes

23 rs3752433 A 22,149,640 0.312 0.392 0.15 2.5E-07 1.6E-07 1.181 0.0067 14 41.451 PHEX

6 rs555017 T 20,293,030 0.369 0.065 0.15 4.0E-06 8.8E-06 1.221 0.00012 3 8.696 MBOAT1

2 rs7578047 C 68,433,432 0.142 0.670 –0.22 4.4E-06 5.8E-06 0.7164 0.000043 7 62.651 PLEK

4 rs2045797 C 103,572,096 0.422 0.915 –0.15 1.1E-05 1.0E-05 0.8443 0.0012 16 109.868 SLC39A8

3 rs17535407 C 105,381,760 0.406 0.003 0.15 1.8E-05 1.0E-05 1.176 0.0018 2 8.094 -

16 rs3922878 C 85,412,208 0.034 0.006 –0.38 2.5E-05 3.5E-05 0.5534 0.00091 3 12.691 -

8 rs3110145 T 60,204,964 0.138 0.013 –0.20 2.5E-05 2.4E-05 0.7081 0.00003 9 129.854 TOX

16 rs10863202 A 84,545,496 0.301 0.139 0.15 2.7E-05 6.0E-05 1.165 0.0053 7 6.522 -

10 rs11201163 A 86,420,712 0.330 0.815 –0.14 2.7E-05 2.8E-05 0.8214 0.00044 5 36.769 -

3 rs12639503 T 51,835,856 0.023 0.148 0.45 3.2E-05 2.6E-05 1.522 0.0045 4 71.18 IQCF2,IQCF3

7 rs10271531 T 80,951,880 0.057 0.501 0.29 3.6E-05 3.5E-05 1.485 0.000037 9 160.549 -

8 rs2572430 T 11,142,714 0.450 0.071 –0.14 3.7E-05 3.9E-03 0.8764 0.011 13 78.835 MTMR9

3 rs1387024 C 114,030,288 0.351 0.699 –0.14 3.7E-05 4.1E-05 0.8734 0.013 6 141.936 CD200R1,CD200R2

8 rs7012323 G 127,651,008 0.247 0.867 –0.16 3.9E-05 3.6E-05 0.8366 0.0037 2 3.323 -

8 rs7820917 T 9,685,278 0.378 0.402 –0.14 3.9E-05 2.9E-03 0.9107 0.078 18 378.211 TNKS

3 rs1878012 C 21,822,622 0.213 0.536 0.16 4.4E-05 3.8E-05 1.251 0.00016 3 4.205 -

9 rs1160245 A 119,032,744 0.490 0.025 0.13 4.4E-05 5.9E-05 1.197 0.00046 17 38.647 ASTN2

5 rs6874556 C 132,619,432 0.426 0.330 0.13 5.0E-05 4.7E-05 1.101 0.061 4 17.986 FSTL4

*p-values results from phenotypes adjusted for principal components representing genetic substructure of ARIC participants.
doi:10.1371/journal.pone.0087257.t002
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with the negative regulation of blood pressure (GO:0045776;

ABAT and VEGFC) and platelet activation (GO:0030168; FYN,

VEGFC, and PDE3A) in our study of Angry Temperament (Table

3). In addition to impacting hippocampal memory and learning,

Fyn is involved with the regulation of platelet shape/response [53]

and cardiac myocyte excitability by modulating voltage-gated

cardiac sodium channels [54]. Similarly, ABAT, a metabolizer of

the inhibitory neurotransmitter GABA, is associated with negative

regulation of blood pressure and has previously been associated

with disorders (e.g., schizophrenia [55] and autism [56]) that are

associated with angry, aggressive behavior. Though the overlap-

ping patterns of association might represent pleiotropic genes, they

also might be the result of a confounding by phenotypic

correlation (e.g., between affect regulation and cardiovascular

disease) [57].

We have evaluated these results in the context of methodolog-

ical limitations, including considerations that (a) replication studies

for this phenotype are not yet available, (b) the measures

demonstrated moderate test-retest reliability, and (c) our available

sample size may be inadequate to identify genome-wide statisti-

cally significant associations that survive correction for population

stratification. This may weaken the strength of association for the

regions identified and, consequently, no targets survived correction

for the number of GO categories evaluated for enrichment. (4)

Another limitation exists with respect to the range of ethnicity:

there was only a modest number of African American subjects,

thus we limited our analyses and generalizability to individuals of

European descent.

These limitations notwithstanding, the differences in the

distribution of results for the Angry Temperament and Angry

Reaction phenotypes are noteworthy. The null results observed for

Angry Reaction scores (i.e., an absence of any inflation of test

statistic, extreme p-values, or evidence of GO enrichment among

top findings) suggest that the associations observed for Angry

Temperament may not be due to chance alone, particularly since

both scores were generated from a single questionnaire. Compared

to those of the Angry Reaction phenotype, the behavioral

characteristics measured by the Angry Temperament items

(unprovoked, frequent, and extreme anger) more closely resemble

the behavioral characteristics of the childhood phenotype --- ones

that resulted in putative associations with genes involved in

hippocampal synaptic plasticity, memory and learning [23]. The

substantial clinical impact of this form of dysregulated emotion on

interpersonal functioning [5,11] and cardiovascular health [14,15]

strongly suggests that additional etiologic research is indicated in

order to identify targets for primary and secondary interventions

across the life-cycle.
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