444 research outputs found

    Herschel-PACS photometry of Uranus' five major moons

    Get PDF
    Aims. We aim to determine far-infrared fluxes at 70, 100, and 160μ\mum of the five major Uranus satellites Titania, Oberon, Umbriel, Ariel and Miranda, based on observations with the photometer PACS-P aboard the Herschel Space Observatory. Methods. The bright image of Uranus is subtracted using a scaled Uranus point spread function (PSF) reference established from all maps of each wavelength in an iterative process removing the superimposed moons. Photometry of the satellites is performed by PSF photometry. Thermophysical models of the icy moons are fitted to the photometry of each measurement epoch and auxilliary data at shorter wavelengths. Results. The best fitting thermophysical models provide constraints for important thermal properties of the moons like surface roughness and thermal inertia. We present the first thermal infrared radiometry longward of 50μ\mum of the four largest Uranian moons, Titania, Oberon, Umbriel and Ariel, at epochs with equator-on illumination. Due to this inclination geometry there was heat transport to the night side so that thermal inertia played a role, allowing us to constrain that parameter. Also some indication for differences in the thermal properties of leading and trailing hemispheres is found. We specify precisely the systematic error of the Uranus flux by its moons, when using Uranus as a far-infrared prime flux calibrator. Conclusions. We have successfully demonstrated an image processing technique for PACS photometer data allowing to remove a bright central source. We have established improved thermophysical models of the five major Uranus satellites. Derived thermal inertia values resemble more those of TNO dwarf planets Pluto and Haumea than those of smaller TNOs and Centaurs.Comment: 25 pages, 10 figures, 7 tables, plus appendices. Accepted for publication on A&

    Herschel-PACS photometry of the five major moons of Uranus

    Get PDF
    Aims: We aim to determine far-infrared fluxes at 70, 100, and 160 μm for the five major Uranus satellites, Titania, Oberon, Umbriel, Ariel, and Miranda. Our study is based on the available calibration observations at wavelengths taken with the PACS photometer aboard the Herschel Space Observatory. Methods: The bright image of Uranus was subtracted using a scaled Uranus point spread function (PSF) reference established from all maps of each wavelength in an iterative process removing the superimposed moons. The photometry of the satellites was performed using PSF photometry. Thermophysical models of the icy moons were fitted to the photometry of each measurement epoch and auxiliary data at shorter wavelengths. Results: The best-fit thermophysical models provide constraints for important properties of the moons, such as surface roughness and thermal inertia. We present the first thermal infrared radiometry longward of 50 μm for the four largest Uranian moons, Titania, Oberon, Umbriel, and Ariel, at epochs with equator-on illumination. Due to this inclination geometry, heat transport took place to the night side so that thermal inertia played a role, allowing us to constrain that parameter. Also, we found some indication for differences in the thermal properties of leading and trailing hemispheres. The total combined flux contribution of the four major moons relative to Uranus is 5.7 × 10-3, 4.8 × 10-3, and 3.4 × 10-3 at 70, 100, and 160 μm, respectively. We therefore precisely specify the systematic error of the Uranus flux by its moons when Uranus is used as a far-infrared prime flux calibrator. Miranda is considerably fainter and always close to Uranus, impeding reliable photometry. Conclusions: We successfully demonstrate an image processing technique for PACS photometer data that allows us to remove a bright central source and reconstruct point source fluxes on the order of 10-3 of the central source as close as ≈3 × the half width at half maximum of the PSF. We established improved thermophysical models of the five major Uranus satellites. Our derived thermal inertia values resemble those of trans-neptunian object (TNO) dwarf planets, Pluto and Haumea, more than those of smaller TNOs and Centaurs at heliocentric distances of about 30 AU. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA

    Influence of temporal lobe epilepsy and temporal lobe resection on olfaction

    Get PDF
    Although temporal lobe epilepsy (TLE) and resection (TLR) impact olfactory eloquent brain structures, their influences on olfaction remain enigmatic. We sought to more definitively assess the influences of TLE and TLR using three well-validated olfactory tests and the tests’ associations with the volume of numerous temporal lobe brain structures. The University of Pennsylvania Smell Identification Test and an odor detection threshold test were administered to 71 TLE patients and 71 age- and sex-matched controls; 69 TLE patients and controls received an odor discrimination/ memory test. Fifty-seven patients and 57 controls were tested on odor identification and threshold before and after TLR; 27 patients and 27 controls were similarly tested for odor detection/discrimination. Scores were compared using analysis of variance and correlated with pre- and post-operative volumes of the target brain structures. TLE was associated with bilateral deficits in all test measures. TLR further decreased function on the side ipsilateral to resection. The hippocampus and other structures were smaller on the focus side of the TLE subjects. Although post-operative volumetric decreases were evident in most measured brain structures, modest contralateral volumetric increases were observed in some cases. No meaningful correlations were evident pre- or post-operatively between the olfactory test scores and the structural volumes. In conclusion, we demonstrate that smell dysfunction is clearly a key element of both TLE and TLR, impacting odor identification, detection, and discrimination/memory. Whether our novel finding of significant post-operative increases in the volume of brain structures contralateral to the resection side reflects plasticity and compensatory processes requires further study

    Variable turbulent convection as the cause of the Blazhko effect - testing the Stothers model

    Get PDF
    The amplitude and phase modulation observed in a significant fraction of the RR Lyrae variables - the Blazhko effect - represents a long-standing enigma in stellar pulsation theory. No satisfactory explanation for the Blazhko effect has been proposed so far. In this paper we focus on the Stothers (2006) idea, in which modulation is caused by changes in the structure of the outer convective zone, caused by a quasi-periodically changing magnetic field. However, up to this date no quantitative estimates were made to investigate whether such a mechanism can be operational and whether it is capable of reproducing the light variation we observe in Blazhko variables. We address the latter problem. We use a simplified model, in which the variation of turbulent convection is introduced into the non-linear hydrodynamic models in an ad hoc way, neglecting interaction with the magnetic field. We study the light curve variation through the modulation cycle and properties of the resulting frequency spectra. Our results are compared with Kepler observations of RR Lyr. We find that reproducing the light curve variation, as is observed in RR Lyr, requires a huge modulation of the mixing length, of the order of +/-50 per cent, on a relatively short time-scale of less than 40 days. Even then, we are not able to reproduce neither all the observed relations between modulation components present in the frequency spectrum, nor the relations between Fourier parameters describing the shape of the instantaneous light curves.Comment: 17 pages, 13 figures, accepted for publication in MNRAS; for associated animation, see http://homepage.univie.ac.at/radek.smolec/publications/KASC11a

    The Mid-Infrared Instrument for the James Webb Space Telescope, III: MIRIM, The MIRI Imager

    Get PDF
    In this article, we describe the MIRI Imager module (MIRIM), which provides broad-band imaging in the 5 - 27 microns wavelength range for the James Webb Space Telescope. The imager has a 0"11 pixel scale and a total unobstructed view of 74"x113". The remainder of its nominal 113"x113" field is occupied by the coronagraphs and the low resolution spectrometer. We present the instrument optical and mechanical design. We show that the test data, as measured during the test campaigns undertaken at CEA-Saclay, at the Rutherford Appleton Laboratory, and at the NASA Goddard Space Flight Center, indicate that the instrument complies with its design requirements and goals. We also discuss the operational requirements (multiple dithers and exposures) needed for optimal scientific utilization of the MIRIM.Comment: 29 pages, 9 figure

    A novel isoform of the Ly108 gene ameliorates murine lupus

    Get PDF
    Studies of human systemic lupus erythematosus patients and of murine congenic mouse strains associate genes in a DNA segment on chromosome 1 with a genetic predisposition for this disease. The systematic analysis of lupus-prone congenic mouse strains suggests a role for two isoforms of the Ly108 receptor in the pathogenesis of the disease. In this study, we demonstrate that Ly108 is involved in the pathogenesis of lupus-related autoimmunity in mice. More importantly, we identified a third protein isoform, Ly108-H1, which is absent in two lupus-prone congenic animals. Introduction of an Ly108-H1–expressing transgene markedly diminishes T cell–dependent autoimmunity in congenic B6.Sle1b mice. Thus, an immune response–suppressing isoform of Ly108 can regulate the pathogenesis of lupus.Peer Reviewe

    MAGE-A cancer/testis antigens inhibit MDM2 ubiquitylation function and promote increased levels of MDM4

    Get PDF
    Melanoma antigen A (MAGE-A) proteins comprise a structurally and biochemically similar sub-family of Cancer/Testis antigens that are expressed in many cancer types and are thought to contribute actively to malignancy. MAGE-A proteins are established regulators of certain cancer-associated transcription factors, including p53, and are activators of several RING finger-dependent ubiquitin E3 ligases. Here, we show that MAGE-A2 associates with MDM2, a ubiquitin E3 ligase that mediates ubiquitylation of more than 20 substrates including mainly p53, MDM2 itself, and MDM4, a potent p53 inhibitor and MDM2 partner that is structurally related to MDM2. We find that MAGE-A2 interacts with MDM2 via the N-terminal p53-binding pocket and the RING finger domain of MDM2 that is required for homo/hetero-dimerization and for E2 ligase interaction. Consistent with these data, we show that MAGE-A2 is a potent inhibitor of the E3 ubiquitin ligase activity of MDM2, yet it does not have any significant effect on p53 turnover mediated by MDM2. Strikingly, however, increased MAGE-A2 expression leads to reduced ubiquitylation and increased levels of MDM4. Similarly, silencing of endogenous MAGE-A expression diminishes MDM4 levels in a manner that can be rescued by the proteasomal inhibitor, bortezomid, and permits increased MDM2/MDM4 association. These data suggest that MAGE-A proteins can: (i) uncouple the ubiquitin ligase and degradation functions of MDM2; (ii) act as potent inhibitors of E3 ligase function; and (iii) regulate the turnover of MDM4. We also find an association between the presence of MAGE-A and increased MDM4 levels in primary breast cancer, suggesting that MAGE-A-dependent control of MDM4 levels has relevance to cancer clinically

    Null mutation for Macrophage Migration Inhibitory Factor (MIF) is associated with less aggressive bladder cancer in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory cytokines may promote tumorigenesis. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine with regulatory properties over tumor suppressor proteins involved in bladder cancer. We studied the development of bladder cancer in wild type (WT) and MIF knockout (KO) mice given N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN), a known carcinogen, to determine the role of MIF in bladder cancer initiation and progression.</p> <p>Methods</p> <p>5-month old male C57Bl/6 MIF WT and KO mice were treated with and without BBN. Animals were sacrificed at intervals up to 23 weeks of treatment. Bladder tumor stage and grade were evaluated by H&E. Immunohistochemical (IHC) analysis was performed for MIF and platelet/endothelial cell adhesion molecule 1 (PECAM-1), a measure of vascularization. MIF mRNA was analyzed by quantitative real-time polymerase chain reaction.</p> <p>Results</p> <p>Poorly differentiated carcinoma developed in all BBN treated mice by week 20. MIF WT animals developed T2 disease, while KO animals developed only T1 disease. MIF IHC revealed predominantly urothelial cytoplasmic staining in the WT control animals and a shift toward nuclear staining in WT BBN treated animals. MIF mRNA levels were 3-fold higher in BBN treated animals relative to controls when invasive cancer was present. PECAM-1 staining revealed significantly more stromal vessels in the tumors in WT animals when compared to KOs.</p> <p>Conclusion</p> <p>Muscle invasive bladder cancer with increased stromal vascularity was associated with increased MIF mRNA levels and nuclear redistribution. Consistently lower stage tumors were seen in MIF KO compared to WT mice. These data suggest that MIF may play a role in the progression to invasive bladder cancer.</p
    • …
    corecore