399 research outputs found

    Common variations in ALG9 are not associated with bipolar I disorder: A family-based study

    Get PDF
    Background: A mannosyltransferase gene (ALG9, DIBD I) at chromosome band 11q23 was previously identified to be disrupted by a balanced chromosomal translocation t(9; 11)(p24;q23) co-segregating with bipolar affective disorder in a small family. Inborn ALG9 deficiency (congenital disorders of glycosylation type IL) is associated with progressive microcephaly, seizures, developmental delay, and hepatomegaly. It is unknown whether common variations of ALG9 predispose to bipolar affective disorder. Methods: We tested five polymorphic markers spanning ALG9 (three intragenic and one upstream microsatellite repeats and one common missense variation, V2891 (rs10502151) for their association with bipolar I disorder in two pedigree series. The NIMH (National Institute of Mental Health) pedigrees had a total of 166 families showing transmissions to 250 affected offspring, whereas The PITT (The University of Pittsburgh) pedigrees had a total of 129 families showing transmissions to 135 cases. We used transmission disequilibrium test for the association analyses. Results: We identified three common and distinct haplotypes spanning the ALG9 gene. We found no statistically-significant evidence of transmission disequilibrium of marker alleles or multi-marker haplotypes to the affected offspring with bipolar I disorder. Conclusion: These results suggest that common variations in ALG9 do not play a major role in predisposition to bipolar affective disorder. © 2006 Baysal et al; licensee BioMed Central Ltd

    Identity-by-descent filtering as a tool for the identification of disease alleles in exome sequence data from distant relatives

    Get PDF
    Large-scale, deep resequencing may be the next logical step in the genetic investigation of common complex diseases. Because each individual is likely to carry many thousands of variants, the identification of causal alleles requires an efficient strategy to reduce the number of candidate variants. Under many genetic models, causal alleles can be expected to reside within identity-by-descent (IBD) regions shared by affected relatives. In distant relatives, IBD regions constitute a small portion of the genome and can thus greatly reduce the search space for causal alleles. However, the effectiveness of this strategy is unknown. We test the simulated mini-exome data set in extended pedigrees provided by Genetic Analysis Workshop 17. At the fourth- and fifth-degree level of relatedness, case-case pairs shared between 1% and 9% of the genome identical by descent. As expected, no genes were shared identical by descent by all case subjects, but 43 genes were shared by many case subjects across at least 50 replicates. We filtered variants in these genes based on population frequency, function, informativeness, and evidence of association using the family-based association test. This analysis highlighted five genes previously implicated in triglyceride, lipid, and cholesterol metabolism. Comparison with the list of true risk alleles revealed that strict IBD filtering followed by association testing of the rarest alleles was the most sensitive strategy. IBD filtering may be a useful strategy for narrowing down the list of candidate variants in exome data, but the optimal degree of relatedness of affected pairs will depend on the genetic architecture of the disease under study

    Regulating levels of the neuromodulator D-serine in human brain: structural insight into pLG72 and D-amino acid oxidase interaction

    Get PDF
    The human flavoenzyme D-amino acid oxidase (hDAAO) degrades the NMDA-receptor modulator D-serine in the brain. Whereas hDAAO has been extensively characterized, little is known about its main modulator pLG72, a small protein encoded by the primate-specific gene G72 that has been associated with schizophrenia susceptibility. pLG72 interacts with neosynthesized hDAAO, promoting its inactivation and degradation. In this work we used low-resolution techniques to characterize the surface topology of the hDAAO-pLG72 complex. By using limited proteolysis coupled to mass spectrometry we could map the exposed regions in the two proteins after complex formation and highlighted an increased sensitivity to proteolysis of hDAAO in complex with pLG72. Cross-linking experiments by using bis(sulfosuccinimidyl)suberate identified the single covalent bond between T182 in hDAAO and K62 in pLG72. In order to validate the designed mode of interaction, three pLG72 variants incrementally truncated at the C-terminus, in addition to a form lacking the 71 N-terminal residues, were produced. All variants were dimeric, folded, and interacted with hDAAO. The strongest decrease in affinity for hDAAO (as well as for the hydrophobic drug chlorpromazine) was apparent for the N-terminally deleted pLG7272-153 form, which lacked K62. On the other hand, eliminating the disordered C-terminal tail yielded a more stable pLG72 protein, improved the binding to hDAAO, although giving lower enzyme inhibition. Elucidation of the mode of hDAAO-pLG72 interaction now makes it possible to design novel molecules that, by targeting the protein complex, can be therapeutically advantageous for diseases related to impairment in D-serine metabolism. This article is protected by copyright. All rights reserved

    Can a systems approach produce a better understanding of mood disorders?

    Get PDF
    Background: One in twenty-five people suffer from a mood disorder. Current treatments are sub-optimal with poor patient response and uncertain modes-of-action. There is thus a need to better understand underlying mechanisms that determine mood, and how these go wrong in affective disorders. Systems biology approaches have yielded important biological discoveries for other complex diseases such as cancer, and their potential in affective disorders will be reviewed. Scope of review: This review will provide a general background to affective disorders, plus an outline of experimental and computational systems biology. The current application of these approaches in understanding affective disorders will be considered, and future recommendations made. Major conclusions: Experimental systems biology has been applied to the study of affective disorders, especially at the genome and transcriptomic levels. However, data generation has been slowed by a lack of human tissue or suitable animal models. At present, computational systems biology has only be applied to understanding affective disorders on a few occasions. These studies provide sufficient novel biological insight to motivate further use of computational biology in this field. General significance: In common with many complex diseases much time and money has been spent on the generation of large-scale experimental datasets. The next step is to use the emerging computational approaches, predominantly developed in the field of oncology, to leverage the most biological insight from these datasets. This will lead to the critical breakthroughs required for more effective diagnosis, stratification and treatment of affective disorders

    Single-nucleotide base excision repair DNA polymerase activity in C. elegans in the absence of DNA polymerase β

    Get PDF
    The base excision DNA repair (BER) pathway known to occur in Caenorhabditis elegans has not been well characterized. Even less is known about the DNA polymerase (pol) requirement for the gap-filling step during BER. We now report on characterization of in vitro uracil-DNA initiated BER in C. elegans. The results revealed single-nucleotide (SN) gap-filling DNA polymerase activity and complete BER. The gap-filling polymerase activity was not due to a DNA polymerase β (pol β) homolog, or to another X-family polymerase, since computer-based sequence analyses of the C. elegans genome failed to show a match for a pol β-like gene or other X-family polymerases. Activity gel analysis confirmed the absence of pol β in the C. elegans extract. BER gap-filling polymerase activity was partially inhibited by both dideoxynucleotide and aphidicolin. The results are consistent with a combination of both replicative polymerase(s) and lesion bypass/BER polymerase pol θ contributing to the BER gap-filling synthesis. Involvement of pol θ was confirmed in experiments with extract from pol θ null animals. The presence of the SN BER in C. elegans is supported by these results, despite the absence of a pol β-like enzyme or other X-family polymerase

    Polymorphisms in the interleukin-10 gene cluster are possibly involved in the increased risk for major depressive disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Innate immune inflammatory response is suggested to have a role in the pathogenesis of major depressive disorder (MDD). Interleukin (IL)-10 family cytokines IL-10, IL-19, IL-20, and IL-24 are all implicated in the inflammatory processes and polymorphisms in respective genes have been associated with various immunopathological conditions. This study was carried out to investigate whether single-nucleotide polymorphisms (SNPs) in these genes are also associated with MDD.</p> <p>Methods</p> <p>Case-control association study was performed with seven SNPs from the <it>IL10 </it>gene cluster. 153 patients with MDD and 277 healthy control individuals were recruited.</p> <p>Results</p> <p>None of the selected SNPs were individually associated with MDD. The linkage disequilibrium (LD) analysis indicated the existence of two recombination sites in the <it>IL10 </it>gene cluster, thus confirming the formerly established LD pattern of this genomic region. This also created two haplotype blocks, both consisting of three SNPs. Additionally, the haplotype analysis detected a significantly higher frequency of block 2 (<it>IL20 </it>and <it>IL24 </it>genes) haplotype TGC in the patients group compared to healthy control individuals (P = 0.0097).</p> <p>Conclusion</p> <p>Our study established increased risk for MDD related to the <it>IL20 </it>and <it>IL24 </it>haplotype and suggests that cytokines may contribute to the pathogenesis of MDD. Since none of the block 2 SNPs were individually associated with MDD, it is possible that other polymorphisms linked to them contribute to the disease susceptibility. Future studies are needed to confirm the results and to find the possible functional explanation.</p

    Investigation of G72 (DAOA) expression in the human brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polymorphisms at the G72/G30 locus on chromosome 13q have been associated with schizophrenia or bipolar disorder in more than ten independent studies. Even though the genetic findings are very robust, the physiological role of the predicted G72 protein has thus far not been resolved. Initial reports suggested G72 as an activator of D-amino acid oxidase (DAO), supporting the glutamate dysfunction hypothesis of schizophrenia. However, these findings have subsequently not been reproduced and reports of endogenous human G72 mRNA and protein expression are extremely limited. In order to better understand the function of this putative schizophrenia susceptibility gene, we attempted to demonstrate G72 mRNA and protein expression in relevant human brain regions.</p> <p>Methods</p> <p>The expression of G72 mRNA was studied by northern blotting and semi-quantitative SYBR-Green and Taqman RT-PCR. Protein expression in human tissue lysates was investigated by western blotting using two custom-made specific anti-G72 peptide antibodies. An in-depth <it>in silico </it>analysis of the G72/G30 locus was performed in order to try and identify motifs or regulatory elements that provide insight to G72 mRNA expression and transcript stability.</p> <p>Results</p> <p>Despite using highly sensitive techniques, we failed to identify significant levels of G72 mRNA in a variety of human tissues (e.g. adult brain, amygdala, caudate nucleus, fetal brain, spinal cord and testis) human cell lines or schizophrenia/control post mortem BA10 samples. Furthermore, using western blotting in combination with sensitive detection methods, we were also unable to detect G72 protein in a number of human brain regions (including cerebellum and amygdala), spinal cord or testis. A detailed <it>in silico </it>analysis provides several lines of evidence that support the apparent low or absent expression of G72.</p> <p>Conclusion</p> <p>Our results suggest that native G72 protein is not normally present in the tissues that we analysed in this study. We also conclude that the lack of demonstrable G72 expression in relevant brain regions does not support a role for G72 in modulation of DAO activity and the pathology of schizophrenia via a DAO-mediated mechanism. <it>In silico </it>analysis suggests that G72 is not robustly expressed and that the transcript is potentially labile. Further studies are required to understand the significance of the G72/30 locus to schizophrenia.</p
    corecore