543 research outputs found

    Substrate integrated waveguide (SIW) bandpass filter with novel microstrip-CPW-SIW input coupling

    Get PDF
    A Substrate integrated waveguide bandpass filter is presented with a novel CPW-to-SIW transition at both the input and output ports which also served as the input and output couplings into the filter. The CPW-to-SIW transition structures presented here exploited the step impedance between the 50 ohms input/output feedline and the transition to control the input/output couplings of the filter. The SIW filter is also shown to have very minimum milling or etching requirement which reduces the fabrication error. The proposed SIW filter has been validated experimentally and results presented. The results show that a simulated return loss of 15 dB and an initial measured return loss of 16 dB were achieved. An improved measured return loss of 22 dB was later achieved after some tuining adjustments were performed on the filter input and output couplings. A minimum insertion loss of 1.3 dB was also achieved across the band

    Truncation of the lipopolysaccharide outer core affects susceptibility to antimicrobial peptides and virulence of Actinobacillus pleuropneumoniae serotype 1.

    Get PDF
    Abstract We reported previously that the core oligosaccharide region of the lipopolysaccharide (LPS) is essential for optimal adhesion of Actinobacillus pleuropneumoniae, an important swine pathogen, to respiratory tract cells. Rough LPS and core LPS mutants of A. pleuropneumoniae serotype 1 were generated by using a mini-Tn10 transposon mutagenesis system. Here we performed a structural analysis of the oligosaccharide region of three core LPS mutants that still produce the same O-antigen by using methylation analyses and mass spectrometry. We also performed a kinetic study of proinflammatory cytokines production such as interleukin (IL)-6, tumor necrosis factor-α, IL1-β, MCP-1, and IL8 by LPS-stimulated porcine alveolar macrophages, which showed that purified LPS of the parent strain, the rough LPS and core LPS mutants, had the same ability to stimulate the production of cytokines. Most interestingly, an in vitro susceptibility test of these LPS mutants to antimicrobial peptides showed that the three core LPS mutants were more susceptible to cationic peptides than both the rough LPS mutant and the wild type parent strain. Furthermore, experimental pig infections with these mutants revealed that the galactose (Gal I) and d,d-heptose (Hep IV) residues present in the outer core of A. pleuropneumoniae serotype 1 LPS are important for adhesion and overall virulence in the natural host, whereas deletion of the terminal GalNAc-Gal II disaccharide had no effect. Our data suggest that an intact core-lipid A region is required for optimal protection of A. pleuropneumoniae against cationic peptides and that deletion of specific residues in the outer LPS core results in the attenuation of the virulence of A. pleuropneumoniae serotype 1

    The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana

    Get PDF
    Plant nucleotide-binding leucine-rich repeat (NB-LRR) disease resistance (R) proteins recognize specific ‘‘avirulent’’ pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs). How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4) and RRS1 (resistance to Ralstonia solanacearum 1), function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NBLRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1) mutant encodes an RRS1 allele (RRS1SLH1) with a single amino acid (leucine) insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi) mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed new light on mechanisms by which NB-LRR protein pairs activate defense signaling, or are held inactive in the absence of a pathogen effector

    Thru-reflect-line calibration for substrate integrated waveguide devices with tapered microstrip transitions

    Get PDF
    One of the main problems when exciting or measuring substrate integrated waveguide (SIW) devices lies in the need of a good interconnection with planar structures. In this reported work, the negative effects produced by the connectors and the tapered microstrip-to-SIW transitions are de-embedded from the measurements of the SIW structure by a thru-reflect-line calibration with an adequate and cheap SIW calibration kit.Díaz Caballero, E.; Belenguer Martínez, Á.; Esteban González, H.; Boria Esbert, VE. (2013). Thru-reflect-line calibration for substrate integrated waveguide devices with tapered microstrip transitions. Electronics Letters. 49(2):132-133. doi:10.1049/el.2012.3027S132133492Deslandes, D., & Wu, K. (2001). Integrated microstrip and rectangular waveguide in planar form. IEEE Microwave and Wireless Components Letters, 11(2), 68-70. doi:10.1109/7260.914305Henry, M., Free, C. E., Izqueirdo, B. S., Batchelor, J., & Young, P. (2009). Millimeter Wave Substrate Integrated Waveguide Antennas: Design and Fabrication Analysis. IEEE Transactions on Advanced Packaging, 32(1), 93-100. doi:10.1109/tadvp.2008.2011284Chen, X.-P., Wu, K., & Li, Z.-L. (2007). Dual-Band and Triple-Band Substrate Integrated Waveguide Filters With Chebyshev and Quasi-Elliptic Responses. IEEE Transactions on Microwave Theory and Techniques, 55(12), 2569-2578. doi:10.1109/tmtt.2007.909603Deslandes, D., & Ke Wu. (2005). Analysis and design of current probe transition from grounded coplanar to substrate integrated rectangular waveguides. IEEE Transactions on Microwave Theory and Techniques, 53(8), 2487-2494. doi:10.1109/tmtt.2005.852778Engen, G. F., & Hoer, C. A. (1979). Thru-Reflect-Line: An Improved Technique for Calibrating the Dual Six-Port Automatic Network Analyzer. IEEE Transactions on Microwave Theory and Techniques, 27(12), 987-993. doi:10.1109/tmtt.1979.1129778Chih-Jung Chen, & Tah-Hsiung Chu. (2009). Measurement of Noncoaxial Multiport Devices Up to the Intrinsic Ports. IEEE Transactions on Microwave Theory and Techniques, 57(5), 1230-1236. doi:10.1109/tmtt.2009.201735

    Risk of falling in a timed Up and Go test using an UWB radar and an instrumented insole

    Get PDF
    Previously, studies reported that falls analysis is possible in the elderly, when using wearable sensors. However, these devices cannot be worn daily, as they need to be removed and recharged from time-to-time due to their energy consumption, data transfer, attachment to the body, etc. This study proposes to introduce a radar sensor, an unobtrusive technology, for risk of falling analysis and combine its performance with an instrumented insole. We evaluated our methods on datasets acquired during a Timed Up and Go (TUG) test where a stride length (SL) was computed by the insole using three approaches. Only the SL from the third approach was not statistically significant (p = 0.2083 > 0.05) compared to the one provided by the radar, revealing the importance of a sensor location on human body. While reducing the number of force sensors (FSR), the risk scores using an insole containing three FSRs and y-axis of acceleration were not significantly different (p > 0.05) compared to the combination of a single radar and two FSRs. We concluded that contactless TUG testing is feasible, and by supplementing the instrumented insole to the radar, more precise information could be available for the professionals to make accurate decision

    Crystallization and preliminary X-ray diffraction analyses of the TIR domains of three TIR-NB-LRR proteins that are involved in disease resistance in Arabidopsis thaliana

    Get PDF
    The Toll/interleukin-1 receptor (TIR) domain is a protein-protein interaction domain that is found in both animal and plant immune receptors. The N-terminal TIR domain from the nucleotide-binding (NB)-leucine-rich repeat (LRR) class of plant disease-resistance (R) proteins has been shown to play an important role in defence signalling. Recently, the crystal structure of the TIR domain from flax R protein L6 was determined and this structure, combined with functional studies, demonstrated that TIR-domain homodimerization is a requirement for function of the R protein L6. To advance the molecular understanding of the function of TIR domains in R-protein signalling, the protein expression, purification, crystallization and X-ray diffraction analyses of the TIR domains of the Arabidopsis thaliana R proteins RPS4 (resistance to Pseudomonas syringae 4) and RRS1 (resistance to Ralstonia solanacearum 1) and the resistance-like protein SNC1 (suppressor of npr1-1, constitutive 1) are reported here. RPS4 and RRS1 function cooperatively as a dual resistance-protein system that prevents infection by three distinct pathogens. SNC1 is implicated in resistance pathways in Arabidopsis and is believed to be involved in transcriptional regulation through its interaction with the transcriptional corepressor TPR1 (Topless-related 1). The TIR domains of all three proteins have successfully been expressed and purified as soluble proteins in Escherichia coli. Plate-like crystals of the RPS4 TIR domain were obtained using PEG 3350 as a precipitant; they diffracted X-rays to 2.05 angstrom resolution, had the symmetry of space group P1 and analysis of the Matthews coefficient suggested that there were four molecules per asymmetric unit. Tetragonal crystals of the RRS1 TIR domain were obtained using ammonium sulfate as a precipitant; they diffracted X-rays to 1.75 angstrom resolution, had the symmetry of space group P4(1)2(1)2 or P4(3)2(1)2 and were most likely to contain one molecule per asymmetric unit. Crystals of the SNC1 TIR domain were obtained using PEG 3350 as a precipitant; they diffracted X-rays to 2.20 angstrom resolution and had the symmetry of space group P4(1)2(1)2 or P4(3)2(1)2, with two molecules predicted per asymmetric unit. These results provide a good foundation to advance the molecular and structural understanding of the function of the TIR domain in plant innate immunity

    An initial event in insect innate immune response: structural and biological studies of interactions between β-1,3-glucan and the N-terminal domain of β-1,3-glucan recognition protein

    Get PDF
    In response to invading microorganisms, insect β-1,3-glucan recognition protein (βGRP), a soluble receptor in the hemolymph, binds to the surfaces of bacteria and fungi and activates serine protease cascades that promote destruction of pathogens by means of melanization or expression of antimicrobial peptides. Here we report on the NMR solution structure of the N-terminal domain of βGRP (N-βGRP) from Indian meal moth (Plodia interpunctella), which is sufficient to activate the prophenoloxidase (proPO) pathway resulting in melanin formation. NMR and isothermal calorimetric titrations of N-βGRP with laminarihexaose, a glucose hexamer containing β-1,3 links, suggest a weak binding of the ligand. However, addition of laminarin, a glucose polysaccharide (~ 6 kDa) containing β-1,3 and β-1,6 links that activates the proPO pathway, to N-βGRP results in the loss of NMR cross-peaks from the backbone 15N-1H groups of the protein, suggesting the formation of a large complex. Analytical ultra centrifugation (AUC) studies of formation of N-βGRP:laminarin complex show that ligand-binding induces sel-fassociation of the protein:carbohydrate complex into a macro structure, likely containing six protein and three laminarin molecules (~ 102 kDa). The macro complex is quite stable, as it does not undergo dissociation upon dilution to sub-micromolar concentrations. The structural model thus derived from the present studies for N-βGRP:laminarin complex in solution differs from the one in which a single N-βGRP molecule has been proposed to bind to a triple helical form of laminarin on the basis of an X-ray crystallographic structure of N-βGRP:laminarihexaose complex [Kanagawa, M., Satoh, T., Ikeda, A., Adachi, Y., Ohno, N., and Yamaguchi, Y. (2011) J. Biol. Chem. 286, 29158-29165]. AUC studies and phenoloxidase activation measurements carried out with the designed mutants of N-βGRP indicate that electrostatic interactions involving Asp45, Arg54, and Asp68 between the ligand-bound protein molecules contribute in part to the stability of N-βGRP:laminarin macro complex and that a decreased stability is accompanied by a reduced activation of the proPO pathway. Increased β-1,6 branching in laminarin also results in destabilization of the macro complex. These novel findings suggest that ligand-induced self-association of βGRP:β-1,3-glucan complex may form a platform on a microbial surface for recruitment of downstream proteases, as a means of amplification of the initial signal of pathogen recognition for the activation of the proPO pathway
    corecore