206 research outputs found

    Risk factors for hospital admission with RSV bronchiolitis in England: a population-based birth cohort study.

    Get PDF
    OBJECTIVE: To examine the timing and duration of RSV bronchiolitis hospital admission among term and preterm infants in England and to identify risk factors for bronchiolitis admission. DESIGN: A population-based birth cohort with follow-up to age 1 year, using the Hospital Episode Statistics database. SETTING: 71 hospitals across England. PARTICIPANTS: We identified 296618 individual birth records from 2007/08 and linked to subsequent hospital admission records during the first year of life. RESULTS: In our cohort there were 7189 hospital admissions with a diagnosis of bronchiolitis, 24.2 admissions per 1000 infants under 1 year (95%CI 23.7-24.8), of which 15% (1050/7189) were born preterm (47.3 bronchiolitis admissions per 1000 preterm infants (95% CI 44.4-50.2)). The peak age group for bronchiolitis admissions was infants aged 1 month and the median was age 120 days (IQR = 61-209 days). The median length of stay was 1 day (IQR = 0-3). The relative risk (RR) of a bronchiolitis admission was higher among infants with known risk factors for severe RSV infection, including those born preterm (RR = 1.9, 95% CI 1.8-2.0) compared with infants born at term. Other conditions also significantly increased risk of bronchiolitis admission, including Down's syndrome (RR = 2.5, 95% CI 1.7-3.7) and cerebral palsy (RR = 2.4, 95% CI 1.5-4.0). CONCLUSIONS: Most (85%) of the infants who are admitted to hospital with bronchiolitis in England are born at term, with no known predisposing risk factors for severe RSV infection, although risk of admission is higher in known risk groups. The early age of bronchiolitis admissions has important implications for the potential impact and timing of future active and passive immunisations. More research is needed to explain why babies born with Down's syndrome and cerebral palsy are also at higher risk of hospital admission with RSV bronchiolitis

    Regulation of the cd38 promoter in human airway smooth muscle cells by TNF-α and dexamethasone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD38 is expressed in human airway smooth muscle (HASM) cells, regulates intracellular calcium, and its expression is augmented by tumor necrosis factor alpha (TNF-α). CD38 has a role in airway hyperresponsiveness, a hallmark of asthma, since deficient mice develop attenuated airway hyperresponsiveness compared to wild-type mice following intranasal challenges with cytokines such as IL-13 and TNF-α. Regulation of CD38 expression in HASM cells involves the transcription factor NF-κB, and glucocorticoids inhibit this expression through NF-κB-dependent and -independent mechanisms. In this study, we determined whether the transcriptional regulation of CD38 expression in HASM cells involves response elements within the promoter region of this gene.</p> <p>Methods</p> <p>We cloned a putative 3 kb promoter fragment of the human <it>cd38 </it>gene into pGL3 basic vector in front of a luciferase reporter gene. Sequence analysis of the putative <it>cd38 </it>promoter region revealed one NF-κB and several AP-1 and glucocorticoid response element (GRE) motifs. HASM cells were transfected with the 3 kb promoter, a 1.8 kb truncated promoter that lacks the NF-κB and some of the AP-1 sites, or the promoter with mutations of the NF-κB and/or AP-1 sites. Using the electrophoretic mobility shift assays, we determined the binding of nuclear proteins to oligonucleotides encoding the putative <it>cd38 </it>NF-κB, AP-1, and GRE sites, and the specificity of this binding was confirmed by gel supershift analysis with appropriate antibodies.</p> <p>Results</p> <p>TNF-α induced a two-fold activation of the 3 kb promoter following its transfection into HASM cells. In cells transfected with the 1.8 kb promoter or promoter constructs lacking NF-κB and/or AP-1 sites or in the presence of dexamethasone, there was no induction in the presence of TNF-α. The binding of nuclear proteins to oligonucleotides encoding the putative <it>cd38 </it>NF-κB site and some of the six AP-1 sites was increased by TNF-α, and to some of the putative <it>cd38 </it>GREs by dexamethasone.</p> <p>Conclusion</p> <p>The EMSA results and the cd38 promoter-reporter assays confirm the functional role of NF-κB, AP-1 and GREs in the cd38 promoter in the transcriptional regulation of CD38.</p

    5-a-day fruit and vegetable food product labels: reduced fruit and vegetable consumption following an exaggerated compared to a modest label.

    Get PDF
    BACKGROUND: Food product labels based on the WHO 5-a-day fruit and vegetable (FV) message are becoming increasingly common, but these labels may impact negatively on complementary or subsequent FV consumption. This study aimed to investigate the impact of a '3 of your 5-a-day' versus a '1 of your 5-a-day' smoothie product label on subsequent FV consumption. METHODS: Using an acute experimental design, 194 participants (90 males, 104 females) were randomised to consume a smoothie labelled as either '3 of your 5-a-day' (N = 97) or '1 of your 5-a-day' (N = 97) in full, following a usual breakfast. Subsequent FV consumption was measured for the rest of the day using 24-h recall. Usual FV consumption was also assessed via 24-h recall for the day before the study. RESULTS: Regression analyses revealed a significantly lower subsequent FV consumption following smoothies displaying the '3 of your 5-a-day' label compared to the '1 of your 5-a-day' label (Beta = - 0.15, p = 0.04). Secondary analyses revealed these effects to be driven mainly by changes to consumption in usual high FV consumers, in females and in vegetable as opposed to fruit consumption. CONCLUSIONS: These findings demonstrate a role for label information in food intake, and the potential negative impacts of an exaggerated food product label on healthy food consumption and healthy dietary profiles

    Structure-based classification and ontology in chemistry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent years have seen an explosion in the availability of data in the chemistry domain. With this information explosion, however, retrieving <it>relevant </it>results from the available information, and <it>organising </it>those results, become even harder problems. Computational processing is essential to filter and organise the available resources so as to better facilitate the work of scientists. Ontologies encode expert domain knowledge in a hierarchically organised machine-processable format. One such ontology for the chemical domain is ChEBI. ChEBI provides a classification of chemicals based on their structural features and a role or activity-based classification. An example of a structure-based class is 'pentacyclic compound' (compounds containing five-ring structures), while an example of a role-based class is 'analgesic', since many different chemicals can act as analgesics without sharing structural features. Structure-based classification in chemistry exploits elegant regularities and symmetries in the underlying chemical domain. As yet, there has been neither a systematic analysis of the types of structural classification in use in chemistry nor a comparison to the capabilities of available technologies.</p> <p>Results</p> <p>We analyze the different categories of structural classes in chemistry, presenting a list of patterns for features found in class definitions. We compare these patterns of class definition to tools which allow for automation of hierarchy construction within cheminformatics and within logic-based ontology technology, going into detail in the latter case with respect to the expressive capabilities of the Web Ontology Language and recent extensions for modelling structured objects. Finally we discuss the relationships and interactions between cheminformatics approaches and logic-based approaches.</p> <p>Conclusion</p> <p>Systems that perform intelligent reasoning tasks on chemistry data require a diverse set of underlying computational utilities including algorithmic, statistical and logic-based tools. For the task of automatic structure-based classification of chemical entities, essential to managing the vast swathes of chemical data being brought online, systems which are capable of hybrid reasoning combining several different approaches are crucial. We provide a thorough review of the available tools and methodologies, and identify areas of open research.</p

    Role of TNFα in pulmonary pathophysiology

    Get PDF
    Tumor necrosis factor alpha (TNFα) is the most widely studied pleiotropic cytokine of the TNF superfamily. In pathophysiological conditions, generation of TNFα at high levels leads to the development of inflammatory responses that are hallmarks of many diseases. Of the various pulmonary diseases, TNFα is implicated in asthma, chronic bronchitis (CB), chronic obstructive pulmonary disease (COPD), acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In addition to its underlying role in the inflammatory events, there is increasing evidence for involvement of TNFα in the cytotoxicity. Thus, pharmacological agents that can either suppress the production of TNFα or block its biological actions may have potential therapeutic value against a wide variety of diseases. Despite some immunological side effects, anti-TNFα therapeutic strategies represent an important breakthrough in the treatment of inflammatory diseases and may have a role in pulmonary diseases characterized by inflammation and cell death

    Sex differences in oncogenic mutational processes

    Get PDF
    Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research

    Towards accurate and precise T1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions

    Get PDF
    Mapping of the longitudinal relaxation time (T1) and extracellular volume (ECV) offers a means of identifying pathological changes in myocardial tissue, including diffuse changes that may be invisible to existing T1-weighted methods. This technique has recently shown strong clinical utility for pathologies such as Anderson- Fabry disease and amyloidosis and has generated clinical interest as a possible means of detecting small changes in diffuse fibrosis; however, scatter in T1 and ECV estimates offers challenges for detecting these changes, and bias limits comparisons between sites and vendors. There are several technical and physiological pitfalls that influence the accuracy (bias) and precision (repeatability) of T1 and ECV mapping methods. The goal of this review is to describe the most significant of these, and detail current solutions, in order to aid scientists and clinicians to maximise the utility of T1 mapping in their clinical or research setting. A detailed summary of technical and physiological factors, issues relating to contrast agents, and specific disease-related issues is provided, along with some considerations on the future directions of the field. Towards accurate and precise T1 and extracellular volume mapping in the myocardium: a guide to current pitfalls and their solutions. Available from: https://www.researchgate.net/publication/317548806_Towards_accurate_and_precise_T1_and_extracellular_volume_mapping_in_the_myocardium_a_guide_to_current_pitfalls_and_their_solutions [accessed Jun 13, 2017]

    The global distribution of lymphatic filariasis, 2000–18: a geospatial analysis

    Get PDF
    Background Lymphatic filariasis is a neglected tropical disease that can cause permanent disability through disruption of the lymphatic system. This disease is caused by parasitic filarial worms that are transmitted by mosquitos. Mass drug administration (MDA) of antihelmintics is recommended by WHO to eliminate lymphatic filariasis as a public health problem. This study aims to produce the first geospatial estimates of the global prevalence of lymphatic filariasis infection over time, to quantify progress towards elimination, and to identify geographical variation in distribution of infection. Methods A global dataset of georeferenced surveyed locations was used to model annual 2000–18 lymphatic filariasis prevalence for 73 current or previously endemic countries. We applied Bayesian model-based geostatistics and time series methods to generate spatially continuous estimates of global all-age 2000–18 prevalence of lymphatic filariasis infection mapped at a resolution of 5 km2 and aggregated to estimate total number of individuals infected. Findings We used 14 927 datapoints to fit the geospatial models. An estimated 199 million total individuals (95% uncertainty interval 174–234 million) worldwide were infected with lymphatic filariasis in 2000, with totals for WHO regions ranging from 3·1 million (1·6–5·7 million) in the region of the Americas to 107 million (91–134 million) in the South-East Asia region. By 2018, an estimated 51 million individuals (43–63 million) were infected. Broad declines in prevalence are observed globally, but focal areas in Africa and southeast Asia remain less likely to have attained infection prevalence thresholds proposed to achieve local elimination. Interpretation Although the prevalence of lymphatic filariasis infection has declined since 2000, MDA is still necessary across large populations in Africa and Asia. Our mapped estimates can be used to identify areas where the probability of meeting infection thresholds is low, and when coupled with large uncertainty in the predictions, indicate additional data collection or intervention might be warranted before MDA programmes cease

    Mapping inequalities in exclusive breastfeeding in low- and middle-income countries, 2000–2018

    Get PDF
    Exclusive breastfeeding (EBF)-giving infants only breast-milk for the first 6 months of life-is a component of optimal breastfeeding practices effective in preventing child morbidity and mortality. EBF practices are known to vary by population and comparable subnational estimates of prevalence and progress across low- and middle-income countries (LMICs) are required for planning policy and interventions. Here we present a geospatial analysis of EBF prevalence estimates from 2000 to 2018 across 94 LMICs mapped to policy-relevant administrative units (for example, districts), quantify subnational inequalities and their changes over time, and estimate probabilities of meeting the World Health Organization's Global Nutrition Target (WHO GNT) of ≥70% EBF prevalence by 2030. While six LMICs are projected to meet the WHO GNT of ≥70% EBF prevalence at a national scale, only three are predicted to meet the target in all their district-level units by 2030.This work was primarily supported by grant no. OPP1132415 from the Bill & Melinda Gates Foundation. Co-authors used by the Bill & Melinda Gates Foundation (E.G.P. and R.R.3) provided feedback on initial maps and drafts of this manuscript. L.G.A. has received support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES), Código de Financiamento 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant nos. 404710/2018-2 and 310797/2019-5). O.O.Adetokunboh acknowledges the National Research Foundation, Department of Science and Innovation and South African Centre for Epidemiological Modelling and Analysis. M.Ausloos, A.Pana and C.H. are partially supported by a grant from the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project no. PN-III-P4-ID-PCCF-2016-0084. P.C.B. would like to acknowledge the support of F. Alam and A. Hussain. T.W.B. was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, funded by the German Federal Ministry of Education and Research. K.Deribe is supported by the Wellcome Trust (grant no. 201900/Z/16/Z) as part of his international intermediate fellowship. C.H. and A.Pana are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project no. PN-III-P2-2.1-SOL-2020-2-0351. B.Hwang is partially supported by China Medical University (CMU109-MF-63), Taichung, Taiwan. M.Khan acknowledges Jatiya Kabi Kazi Nazrul Islam University for their support. A.M.K. acknowledges the other collaborators and the corresponding author. Y.K. was supported by the Research Management Centre, Xiamen University Malaysia (grant no. XMUMRF/2020-C6/ITM/0004). K.Krishan is supported by a DST PURSE grant and UGC Centre of Advanced Study (CAS II) awarded to the Department of Anthropology, Panjab University, Chandigarh, India. M.Kumar would like to acknowledge FIC/NIH K43 TW010716-03. I.L. is a member of the Sistema Nacional de Investigación (SNI), which is supported by the Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panamá. M.L. was supported by China Medical University, Taiwan (CMU109-N-22 and CMU109-MF-118). W.M. is currently a programme analyst in Population and Development at the United Nations Population Fund (UNFPA) Country Office in Peru, which does not necessarily endorses this study. D.E.N. acknowledges Cochrane South Africa, South African Medical Research Council. G.C.P. is supported by an NHMRC research fellowship. P.Rathi acknowledges support from Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India. Ramu Rawat acknowledges the support of the GBD Secretariat for supporting the reviewing and collaboration of this paper. B.R. acknowledges support from Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal. A.Ribeiro was supported by National Funds through FCT, under the programme of ‘Stimulus of Scientific Employment—Individual Support’ within the contract no. info:eu-repo/grantAgreement/FCT/CEEC IND 2018/CEECIND/02386/2018/CP1538/CT0001/PT. S.Sajadi acknowledges colleagues at Global Burden of Diseases and Local Burden of Disease. A.M.S. acknowledges the support from the Egyptian Fulbright Mission Program. F.S. was supported by the Shenzhen Science and Technology Program (grant no. KQTD20190929172835662). A.Sheikh is supported by Health Data Research UK. B.K.S. acknowledges Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal for all the academic support. B.U. acknowledges support from Manipal Academy of Higher Education, Manipal. C.S.W. is supported by the South African Medical Research Council. Y.Z. was supported by Science and Technology Research Project of Hubei Provincial Department of Education (grant no. Q20201104) and Outstanding Young and Middle-aged Technology Innovation Team Project of Hubei Provincial Department of Education (grant no. T2020003). The funders of the study had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication. All maps presented in this study are generated by the authors and no permissions are required to publish them
    corecore