591 research outputs found

    Direct Estimate of Cirrus Noise in Herschel Hi-GAL Images

    Get PDF
    In Herschel images of the Galactic plane and many star forming regions, a major factor limiting our ability to extract faint compact sources is cirrus confusion noise, operationally defined as the "statistical error to be expected in photometric measurements due to confusion in a background of fluctuating surface brightness". The histogram of the flux densities of extracted sources shows a distinctive faint-end cutoff below which the catalog suffers from incompleteness and the flux densities become unreliable. This empirical cutoff should be closely related to the estimated cirrus noise and we show that this is the case. We compute the cirrus noise directly, both on Herschel images from which the bright sources have been removed and on simulated images of cirrus with statistically similar fluctuations. We connect these direct estimates with those from power spectrum analysis, which has been used extensively to predict the cirrus noise and provides insight into how it depends on various statistical properties and photometric operational parameters. We report multi-wavelength power spectra of diffuse Galactic dust emission from Hi-GAL observations at 70 to 500 microns within Galactic plane fields at l= 30 degrees and l= 59 degrees. We find that the exponent of the power spectrum is about -3. At 250 microns, the amplitude of the power spectrum increases roughly as the square of the median brightness of the map and so the expected cirrus noise scales linearly with the median brightness. Generally, the confusion noise will be a worse problem at longer wavelengths, because of the combination of lower angular resolution and the rising power spectrum of cirrus toward lower spatial frequencies, but the photometric signal to noise will also depend on the relative spectral energy distribution of the source compared to the cirrus.Comment: 4 pages (in journal), 3 figures, Astronomy and Astrophysics, accepted for publication 13 May 201

    The Gas Temperature of Starless Cores in Perseus

    Get PDF
    In this paper we study the determinants of starless core temperatures in the Perseus molecular cloud. We use NH3 (1,1) and (2,2) observations to derive core temperatures (T_kin) and data from the COMPLETE Survey of Star Forming Regions and the c2d Spitzer Legacy Survey for observations of the other core and molecular cloud properties. The kinetic temperature distribution probed by NH3 is in the fairly narrow range of 9 - 15 K. We find that cores within the clusters IC348 and NGC1333 are significantly warmer than "field" starless cores, and T_kin is higher within regions of larger extinction-derived column density. Starless cores in the field are warmer when they are closer to class O/I protostars, but this effect is not seen for those cores in clusters. For field starless cores, T_kin is higher in regions in which the 13CO linewidth and the 1.1mm flux from the core are larger, and T_kin is lower when the the peak column density within the core and average volume density of the core are larger. There is no correlation between T_kin and 13CO linewidth, 1.1mm flux, density or peak column density for those cores in clusters. The temperature of the cloud material along the line of sight to the core, as measured by CO or far-infrared emission from dust, is positively correlated with core temperature when considering the collection of cores in the field and in clusters, but this effect is not apparent when the two subsamples of cores are considered separately.Comment: Accepted to ApJ; 13 pages, including 3 tables and three figure

    Pnictogens Allotropy and Phase Transformation during van der Waals Growth

    Full text link
    Pnictogens have multiple allotropic forms resulting from their ns2 np3 valence electronic configuration, making them the only elemental materials to crystallize in layered van der Waals (vdW) and quasi-vdW structures throughout the group. Light group VA elements are found in the layered orthorhombic A17 phase such as black phosphorus, and can transition to the layered rhombohedral A7 phase at high pressure. On the other hand, bulk heavier elements are only stable in the A7 phase. Herein, we demonstrate that these two phases not only co-exist during the vdW growth of antimony on weakly interacting surfaces, but also undertake a spontaneous transformation from the A17 phase to the thermodynamically stable A7 phase. This metastability of the A17 phase is revealed by real-time studies unraveling its thickness-driven transition to the A7 phase and the concomitant evolution of its electronic properties. At a critical thickness of ~4 nm, A17 antimony undergoes a diffusionless shuffle transition from AB to AA stacked alpha-antimonene followed by a gradual relaxation to the A7 bulk-like phase. Furthermore, the electronic structure of this intermediate phase is found to be determined by surface self-passivation and the associated competition between A7- and A17-like bonding in the bulk. These results highlight the critical role of the atomic structure and interfacial interactions in shaping the stability and electronic characteristics of vdW layered materials, thus enabling a new degree of freedom to engineer their properties using scalable processes

    Evidence for dust evolution within the Taurus Complex from Spitzer images

    Get PDF
    We present Spitzer images of the Taurus Complex (TC) and take advantage of the sensitivity and spatial resolution of the observations to characterize the diffuse IR emission across the cloud. This work highlights evidence of dust evolution within the translucent sections of the archetype reference for studies of quiescent molecular clouds. We combine Spitzer 160 um and IRAS 100 um observations to produce a dust temperature map and a far-IR dust opacity map at 5' resolution. The average dust temperature is about 14.5K with a dispersion of +/-1K across the cloud. The far-IR dust opacity is a factor 2 larger than the average value for the diffuse ISM. This opacity increase and the attenuation of the radiation field (RF) both contribute to account for the lower emission temperature of the large grains. The structure of the TC significantly changes in the mid-IR images that trace emission from PAHs and VSGs. We focus our analysis of the mid-IR emission to a range of ecliptic latitudes where the zodiacal light residuals are small. Within this cloud area, there are no 8 and 24 um counterparts to the brightest 160 um emission features. Conversely, the 8 and 24 um images reveal filamentary structure that is strikingly inconspicuous in the 160 um and extinction maps. The IR colors vary over sub-parsec distances across this filamentary structure. We compare the observed colors with model calculations quantifying the impact of the RF intensity and the abundance of stochastically heated particles on the dust SED. To match the range of observed colors, we have to invoke variations by a factor of a few of both the interstellar RF and the abundance of PAHs and VSGs. We conclude that within this filamentary structure a significant fraction of the dust mass cycles in and out the small size end of the dust size distribution.Comment: 43 pages, 13 figures, accepted for publication in Ap

    The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths

    Get PDF
    We present the Planck Sky Model (PSM), a parametric model for the generation of all-sky, few arcminute resolution maps of sky emission at submillimetre to centimetre wavelengths, in both intensity and polarisation. Several options are implemented to model the cosmic microwave background, Galactic diffuse emission (synchrotron, free-free, thermal and spinning dust, CO lines), Galactic H-II regions, extragalactic radio sources, dusty galaxies, and thermal and kinetic Sunyaev-Zeldovich signals from clusters of galaxies. Each component is simulated by means of educated interpolations/extrapolations of data sets available at the time of the launch of the Planck mission, complemented by state-of-the-art models of the emission. Distinctive features of the simulations are: spatially varying spectral properties of synchrotron and dust; different spectral parameters for each point source; modeling of the clustering properties of extragalactic sources and of the power spectrum of fluctuations in the cosmic infrared background. The PSM enables the production of random realizations of the sky emission, constrained to match observational data within their uncertainties, and is implemented in a software package that is regularly updated with incoming information from observations. The model is expected to serve as a useful tool for optimizing planned microwave and sub-millimetre surveys and to test data processing and analysis pipelines. It is, in particular, used for the development and validation of data analysis pipelines within the planck collaboration. A version of the software that can be used for simulating the observations for a variety of experiments is made available on a dedicated website.Comment: 35 pages, 31 figure

    IR-correlated 31 GHz radio emission from Orion East

    Get PDF
    Lynds dark cloud LDN1622 represents one of the best examples of anomalous dust emission, possibly originating from small spinning dust grains. We present Cosmic Background Imager (CBI) 31 GHz data of LDN1621, a diffuse dark cloud to the north of LDN1622 in a region known as Orion East. A broken ring with diameter g\approx 20 arcmin of diffuse emission is detected at 31 GHz, at \approx 20-30 mJy beam1^{-1} with an angular resolution of \approx 5 arcmin. The ring-like structure is highly correlated with Far Infra-Red emission at 12100μ12-100 \mum with correlation coefficients of r \approx 0.7-0.8, significant at 10σ\sim10\sigma. Multi-frequency data are used to place constraints on other components of emission that could be contributing to the 31 GHz flux. An analysis of the GB6 survey maps at 4.85 GHz yields a 3σ3\sigma upper limit on free-free emission of 7.2 mJy beam1^{-1} (\la 30 per cent of the observed flux) at the CBI resolution. The bulk of the 31 GHz flux therefore appears to be mostly due to dust radiation. Aperture photometry, at an angular resolution of 13 arcmin and with an aperture of diameter 30 arcmin, allowed the use of IRAS maps and the {\it WMAP} 5-year W-band map at 93.5 GHz. A single modified blackbody model was fitted to the data to estimate the contribution from thermal dust, which amounts to \sim10percentat31GHz.Inthismodel,anexcessof1.52±0.66Jy(2.3σ)isseenat31GHz.Futurehighfrequency 10 per cent at 31 GHz. In this model, an excess of 1.52\pm 0.66 Jy (2.3\sigma) is seen at 31 GHz. Future high frequency \sim1001000GHzdata,suchasthosefromthePlancksatellite,arerequiredtoaccuratelydeterminethethermaldustcontributionat31GHz.CorrelationswiththeIRAS 100-1000 GHz data, such as those from the {\it Planck} satellite, are required to accurately determine the thermal dust contribution at 31 GHz. Correlations with the IRAS 100 \mumgaveacouplingcoefficientofm gave a coupling coefficient of 18.1\pm4.4 \muK(MJy/sr)K (MJy/sr)^{-1}$, consistent with the values found for LDN1622.Comment: 8 pages, 3 figures, 3 tables, submitted to MNRA

    Component separation methods for the Planck mission

    Get PDF
    The Planck satellite will map the full sky at nine frequencies from 30 to 857 GHz. The CMB intensity and polarization that are its prime targets are contaminated by foreground emission. The goal of this paper is to compare proposed methods for separating CMB from foregrounds based on their different spectral and spatial characteristics, and to separate the foregrounds into components of different physical origin. A component separation challenge has been organized, based on a set of realistically complex simulations of sky emission. Several methods including those based on internal template subtraction, maximum entropy method, parametric method, spatial and harmonic cross correlation methods, and independent component analysis have been tested. Different methods proved to be effective in cleaning the CMB maps from foreground contamination, in reconstructing maps of diffuse Galactic emissions, and in detecting point sources and thermal Sunyaev-Zeldovich signals. The power spectrum of the residuals is, on the largest scales, four orders of magnitude lower than that of the input Galaxy power spectrum at the foreground minimum. The CMB power spectrum was accurately recovered up to the sixth acoustic peak. The point source detection limit reaches 100 mJy, and about 2300 clusters are detected via the thermal SZ effect on two thirds of the sky. We have found that no single method performs best for all scientific objectives. We foresee that the final component separation pipeline for Planck will involve a combination of methods and iterations between processing steps targeted at different objectives such as diffuse component separation, spectral estimation and compact source extraction.Comment: Matches version accepted by A&A. A version with high resolution figures is available at http://people.sissa.it/~leach/compsepcomp.pd

    Velocity Spectrum for HI at High Latitudes

    Get PDF
    In this paper we present the results of the statistical analysis of high-latitude HI turbulence in the Milky Way. We have observed HI in the 21 cm line, obtained with the Arecibo L-Band Feed Array (ALFA) receiver at the Arecibo radio telescope. For recovering of velocity statistics we have used the Velocity Coordinate Spectrum (VCS) technique. In our analysis we have used direct fitting of the VCS model, as its asymptotic regimes are questionable for Arecibo's resolution and given the restrictions from thermal smoothing of the turbulent line. We have obtained a velocity spectral index 3.87±0.113.87 \pm 0.11, an injection scale of 140±80140 \pm 80 pc, and an HI cold phase temperature of 52±1152 \pm 11 K. The spectral index is steeper than the Kolmogorov index and can be interpreted as being due to shock-dominated turbulence.Comment: Accepted to Ap

    BLAST05: Power Spectra of Bright Galactic Cirrus at Submillimeter Wavelengths

    Get PDF
    We report multi-wavelength power spectra of diffuse Galactic dust emission from BLAST observations at 250, 350, and 500 microns in Galactic Plane fields in Cygnus X and Aquila. These submillimeter power spectra statistically quantify the self-similar structure observable over a broad range of scales and can be used to assess the cirrus noise which limits the detection of faint point sources. The advent of submillimeter surveys with the Herschel Space Observatory makes the wavelength dependence a matter of interest. We show that the observed relative amplitudes of the power spectra can be related through a spectral energy distribution (SED). Fitting a simple modified black body to this SED, we find the dust temperature in Cygnus X to be 19.9 +/- 1.3 K and in the Aquila region 16.9 +/- 0.7 K. Our empirical estimates provide important new insight into the substantial cirrus noise that will be encountered in forthcoming observations.Comment: Submitted to the Astrophysical Journal. Maps and other data are available at http://blastexperiment.info
    corecore