242 research outputs found
Improving Incremental Balance in the GSI 3DVAR Analysis System
The Gridpoint Statistical Interpolation (GSI) analysis system is a unified global/regional 3DVAR analysis code that has been under development for several years at the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center. It has recently been implemented into operations at NCEP in both the global and North American data assimilation systems (GDAS and NDAS). An important aspect of this development has been improving the balance of the analysis produced by GSI. The improved balance between variables has been achieved through the inclusion of a Tangent Linear Normal Mode Constraint (TLNMC). The TLNMC method has proven to be very robust and effective. The TLNMC as part of the global GSI system has resulted in substantial improvement in data assimilation both at NCEP and at the NASA Global Modeling and Assimilation Office (GMAO)
Effects of data selection on the assimilation of AIRS data
The Atmospheric InfraRed Sounder (AIRS), flying aboard NASA's Earth Observing System (EOS) Aqua satellite with the Advanced Microwave Sounding Unit-A (AMSU-A), has been providing data for use in numerical weather prediction (NWP) and data assimilation systems (DAS) for over three years. The full AIRS data set is currently not transmitted in near-real-time (NRT) to the NWP centers. Instead, data sets with reduced spatial and spectral information are produced and made available in NRT. In this paper, we evaluate the use of different channel selections and error specifications. We achieved significant positive impact from the Aqua AIRS/AMSU-A combination in both hemispheres during our experimental time period of January 2003. The best results were obtained using a set of 156 channels that did not include any in the 6.7micron water vapor band. The latter have a large influence on both temperature and humidity analyses. If observation and background errors are not properly specified, the partitioning of temperature and humidity information from these channels will not be correct, and this can lead to a degradation in forecast skill. We found that changing the specified channel errors had a significant effect on the amount of data that entered into the analysis as a result of quality control thresholds that are related to the errors. However, changing the channel errors within a relatively small window did not significantly impact forecast skill with the 155 channel set. We also examined the effects of different types of spatial data reduction on assimilated data sets and NWP forecast skill. Whether we picked the center or the warmest AIRS pixel in a 3x3 array affected the amount of data ingested by the analysis but had a negligible impact on the forecast skill
Self energies of the pion and the delta isobar from the ^3He(e,e'pi^+)^3H reaction
In a kinematically complete experiment at the Mainz microtron MAMI, pion
angular distributions of the He(e,e'H reaction have been measured
in the excitation region of the resonance to determine the
longitudinal (), transverse (), and the interference part of the
differential cross section. The data are described only after introducing
self-energy modifications of the pion and -isobar propagators. Using
Chiral Perturbation Theory (ChPT) to extrapolate the pion self energy as
inferred from the measurement on the mass shell, we deduce a reduction of the
mass of MeV/c in the
neutron-rich nuclear medium at a density of fm. Our data are consistent with the self energy
determined from measurements of photoproduction from He and heavier
nuclei.Comment: Elsart, 12 pages and 4 figures, Correspondent: Professor Dr. Dr. h.c.
mult. Achim Richter, [email protected], submitted to Phys. Rev.
Let
The first determination of Generalized Polarizabilities of the proton by a Virtual Compton Scattering experiment
Absolute differential cross sections for the reaction (e+p -> e+p+gamma) have
been measured at a four-momentum transfer with virtuality Q^2=0.33 GeV^2 and
polarization \epsilon = 0.62 in the range 33.6 to 111.5 MeV/c for the momentum
of the outgoing photon in the photon-proton center of mass frame. The
experiment has been performed with the high resolution spectrometers at the
Mainz Microtron MAMI. From the photon angular distributions, two structure
functions which are a linear combination of the generalized polarizabilities
have been determined for the first time.Comment: 4 pages, 3 figure
Polarization transfer in the HeH reaction
Polarization transfer in the 4He(e,e'p)3H reaction at a Q^2 of 0.4 (GeV/c)^2
was measured at the Mainz Microtron MAMI. The ratio of the transverse to the
longitudinal polarization components of the ejected protons was compared with
the same ratio for elastic ep scattering. The results are consistent with a
recent fully relativistic calculation which includes a predicted medium
modification of the proton form factor based on a quark-meson coupling model.Comment: 5 pages, Latex, 2 postscript figures, submitted to Physics Letters
Measurement of the recoil polarization in the p (\vec e, e' \vec p) pi^0 reaction at the \Delta(1232) resonance
The recoil proton polarization has been measured in the p (\vec e,e'\vec p)
pi^0 reaction in parallel kinematics around W = 1232 MeV, Q^2 = 0.121 (GeV/c)^2
and epsilon = 0.718 using the polarized c.w. electron beam of the Mainz
Microtron. Due to the spin precession in a magnetic spectrometer, all three
proton polarization components P_x/P_e = (-11.4 \pm 1.3 \pm 1.4) %, P_y =
(-43.1 \pm 1.3 \pm 2.2) %, and P_z/P_e = (56.2 \pm 1.5 \pm 2.6) % could be
measured simultaneously. The Coulomb quadrupole to magnetic dipole ratio CMR =
(-6.4\pm 0.7_{stat}\pm 0.8_{syst}) % was determined from P_x in the framework
of the Mainz Unitary Isobar Model. The consistency among the reduced
polarizations and the extraction of the ratio of longitudinal to transverse
response is discussed.Comment: 5 pages LaTeX, 1 table, 2 eps figure
Recommended from our members
Corporate social responsibility: The good, the bad and the ugly
In this article I critically analyze contemporary discourses of corporate social responsibility and related discourses of sustainability and corporate citizenship. I argue that despite their emancipatory rhetoric, discourses of corporate citizenship, social responsibility and sustainability are defined by narrow business interests and serve to curtail interests of external stakeholders. I provide an alternate perspective, one that views discourses of corporate citizenship, corporate social responsibility, and sustainability as ideological movements that are intended to legitimize and consolidate the power of large corporations. I also problematize the popular notion of organizational 'stakeholders'. I argue that stakeholder theory of the firm represents a form of stakeholder colonialism that serves to regulate the behavior of stakeholders. I conclude by discussing implications for critical management studies
Recommended from our members
Uncertainties in steric sea level change estimation during the satellite altimeter era: concepts and practices
This article presents a review of current practice in estimating steric sea level change, focussed on the treatment of uncertainty. Steric sea level change is the contribution to the change in sea level arising from the dependence of density on temperature and salinity. It is a significant component of sea level rise and a reflection of changing ocean heat content. However tracking these steric changes remains still a significant challenge for the scientific community. We review the importance of understanding the uncertainty in estimates of steric sea level change. Relevant concepts of uncertainty are discussed and illustrated with the example of observational uncertainty propagation from a single profile of temperature and salinity measurements to steric height. We summarise and discuss the recent literature on methodologies and techniques used to estimate steric sea level in the context of the treatment of uncertainty. Our conclusions are that progress in quantifying steric sea level uncertainty will benefit from: greater clarity and transparency in published discussions of uncertainty, including exploitation of international standards for quantifying and expressing uncertainty in measurement; and the development of community ‘recipes’ for quantifying the error covariances in observations and from sparse sampling, and for estimating and propagating uncertainty across spatio-temporal scales
Diseño de un modelo de referenciación a personas en emergencia social víctimas del conflicto armado residentes en Bogotá
Tesis de GradoEl propósito de la investigación fue diseñar la estructura conceptual de un modelo de referenciación para víctimas del conflicto armado atendidas en el servicio Enlace Social de la Secretaria Distrital de Integración Social residentes Bogotá. Así como, realizar la caracterización de 361 registros de la ficha del sistema de registro de beneficiarios SIRBE aplicada a VCA participantes en el servicio ES de la SDIS desde el año 2013 hasta Septiembre del 2017 y caracterización 18 instituciones y 29 programas o servicios dirigidos a VCA con el fin de identificar la oferta de servicios sociales disponibles para este grupo poblacional.1. Resumen
2. Antecedentes conceptuales y empíricos 3. Justificación
4. Objetivos
5. Método
6. Resultados
7. Discusión y conclusiones
8. Referencias
9. ApéndicesMaestríaMagister en Psicologí
Recommended from our members
Balance conditions in variational data assimilation for a high-resolution forecast model
This paper explores the role of balance relationships for background error covariance modelling as the model's grid box decreases to convective-scales. Data assimilation (DA) analyses are examined from a simplified convective-scale model and DA system (called ABC-DA) with a grid box size of 1.5km in a 2D 540km (longitude), 15km (height) domain. The DA experiments are performed with background error covariance matrices B modelled and calibrated by switching on/off linear balance (LB) and hydrostatic balance (HB), and by observing a subset of the ABC variables, namely v, meridional wind, r', scaled density (a pressure-like variable), and b', buoyancy (a temperature-like variable). Calibration data are sourced from two methods of generating proxies of forecast errors. One uses forecasts from different latitude slices of a 3D parent model (here called the `latitude slice method'), and the other uses sets of differences between forecasts of different lengths but valid at the same time (the National Meteorological Center method).
Root-mean-squared errors computed over the domain from identical twin DA experiments suggest that there is no combination of LB/HB switches that give the best analysis for all model quantities. It is frequently found though that the B-matrices modelled with both LB and HB do perform the best. A clearer picture emerges when the errors are examined at different spatial scales. In particular it is shown that switching on HB in B mostly has a neutral/positive effect on the DA accuracy at `large' scales, and switching off the HB has a neutral/positive effect at `small' scales. The division between `large' and `small' scales is between 10 and 100km. Furthermore, one hour forecast error correlations computed between control parameters find that correlations are small at large scales when balances are enforced, and at small scales when balances are not enforced (ideal control parameters have zero cross correlations). This points the way to modelling B with scale-dependent balances
- …