411 research outputs found

    Global assessment of nitrogen deposition effects on terrestrial plant diversity : a synthesis

    Get PDF
    Atmospheric nitrogen (N) deposition is it recognized threat to plant diversity ill temperate and northern parts of Europe and North America. This paper assesses evidence from field experiments for N deposition effects and thresholds for terrestrial plant diversity protection across a latitudinal range of main categories of ecosystems. from arctic and boreal systems to tropical forests. Current thinking on the mechanisms of N deposition effects on plant diversity, the global distribution of G200 ecoregions, and current and future (2030) estimates of atmospheric N-deposition rates are then used to identify the risks to plant diversity in all major ecosystem types now and in the future. This synthesis paper clearly shows that N accumulation is the main driver of changes to species composition across the whole range of different ecosystem types by driving the competitive interactions that lead to composition change and/or making conditions unfavorable for some species. Other effects such its direct toxicity of nitrogen gases and aerosols long-term negative effects of increased ammonium and ammonia availability, soil-mediated effects of acidification, and secondary stress and disturbance are more ecosystem, and site-specific and often play a supporting role. N deposition effects in mediterranean ecosystems have now been identified, leading to a first estimate of an effect threshold. Importantly, ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase. in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas. Critical loads are effect thresholds for N deposition. and the critical load concept has helped European governments make progress toward reducing N loads on sensitive ecosystems. More needs to be done in Europe and North America. especially for the more sensitive ecosystem types. including several ecosystems of high conservation importance. The results of this assessment Show that the Vulnerable regions outside Europe and North America which have not received enough attention are ecoregions in eastern and Southern Asia (China, India), an important part of the mediterranean ecoregion (California, southern Europe). and in the coming decades several subtropical and tropical parts of Latin America and Africa. Reductions in plant diversity by increased atmospheric N deposition may be more widespread than first thought, and more targeted Studies are required in low background areas, especially in the G200 ecoregions

    Multi-model simulations of the impact of international shipping on Atmospheric Chemistry and Climate in 2000 and 2030

    Get PDF
    The global impact of shipping on atmospheric chemistry and radiative forcing, as well as the associated uncertainties, have been quantified using an ensemble of ten state-of-the-art atmospheric chemistry models and a predefined set of emission data. The analysis is performed for present-day conditions ( year 2000) and for two future ship emission scenarios. In one scenario ship emissions stabilize at 2000 levels; in the other ship emissions increase with a constant annual growth rate of 2.2% up to 2030 ( termed the "Constant Growth Scenario" (CGS)). Most other anthropogenic emissions follow the IPCC ( Intergovernmental Panel on Climate Change) SRES ( Special Report on Emission Scenarios) A2 scenario, while biomass burning and natural emissions remain at year 2000 levels. An intercomparison of the model results with observations over the Northern Hemisphere (25 degrees - 60 degrees N) oceanic regions in the lower troposphere showed that the models are capable to reproduce ozone (O-3) and nitrogen oxides (NOx= NO+ NO2) reasonably well, whereas sulphur dioxide (SO2) in the marine boundary layer is significantly underestimated. The most pronounced changes in annual mean tropospheric NO2 and sulphate columns are simulated over the Baltic and North Seas. Other significant changes occur over the North Atlantic, the Gulf of Mexico and along the main shipping lane from Europe to Asia, across the Red and Arabian Seas. Maximum contributions from shipping to annual mean near-surface O-3 are found over the North Atlantic ( 5 - 6 ppbv in 2000; up to 8 ppbv in 2030). Ship contributions to tropospheric O3 columns over the North Atlantic and Indian Oceans reach 1 DU in 2000 and up to 1.8 DU in 2030. Tropospheric O-3 forcings due to shipping are 9.8 +/- 2.0 mW/m(2) in 2000 and 13.6 +/- 2.3 mW/m(2) in 2030. Whilst increasing O-3, ship NOx simultaneously enhances hydroxyl radicals over the remote ocean, reducing the global methane lifetime by 0.13 yr in 2000, and by up to 0.17 yr in 2030, introducing a negative radiative forcing. The models show future increases in NOx and O-3 burden which scale almost linearly with increases in NOx emission totals. Increasing emissions from shipping would significantly counteract the benefits derived from reducing SO2 emissions from all other anthropogenic sources under the A2 scenario over the continents, for example in Europe. Globally, shipping contributes 3% to increases in O-3 burden between 2000 and 2030, and 4.5% to increases in sulphate under A2/CGS. However, if future ground based emissions follow a more stringent scenario, the relative importance of ship emissions will increase. Inter-model differences in the simulated O-3 contributions from ships are significantly smaller than estimated uncertainties stemming from the ship emission inventory, mainly the ship emission totals, the distribution of the emissions over the globe, and the neglect of ship plume dispersion

    A multi-model study of the hemispheric transport and deposition of oxidised nitrogen.

    Get PDF
    Fifteen chemistry-transport models are used to quantify, for the first time, the export of oxidised nitrogen (NOy) to and from four regions (Europe, North America, South Asia, and East Asia), and to estimate the uncertainty in the results. Between 12 and 24% of the NOx emitted is exported from each region annually. The strongest impact of each source region on a foreign region is: Europe on East Asia, North America on Europe, South Asia on East Asia, and East Asia on North America. Europe exports the most NOy, and East Asia the least. East Asia receives the most NOy from the other regions. Between 8 and 15% of NOx emitted in each region is transported over distances larger than 1000 km, with 3–10% ultimately deposited over the foreign regions

    Organic aerosol and global climate modelling: a review

    Get PDF
    The present paper reviews existing knowledge with regard to Organic Aerosol (OA) of importance for global climate modelling and defines critical gaps needed to reduce the involved uncertainties. All pieces required for the representation of OA in a global climate model are sketched out with special attention to Secondary Organic Aerosol (SOA): The emission estimates of primary carbonaceous particles and SOA precursor gases are summarized. The up-to-date understanding of the chemical formation and transformation of condensable organic material is outlined. Knowledge on the hygroscopicity of OA and measurements of optical properties of the organic aerosol constituents are summarized. The mechanisms of interactions of OA with clouds and dry and wet removal processes parameterisations in global models are outlined. This information is synthesized to provide a continuous analysis of the flow from the emitted material to the atmosphere up to the point of the climate impact of the produced organic aerosol. The sources of uncertainties at each step of this process are highlighted as areas that require further studies

    The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment

    Get PDF
    The effects of unified aerosol sources on global aerosol fields simulated by different models are examined in this paper. We compare results from two AeroCom experiments, one with different (ExpA) and one with unified emissions, injection heights, and particle sizes at the source (ExpB). Surprisingly, harmonization of aerosol sources has only a small impact on the simulated diversity for aerosol burden, and consequently optical properties, as the results are largely controlled by model-specific transport, removal, chemistry (leading to the formation of secondary aerosols) and parameterizations of aerosol microphysics (e.g. the split between deposition pathways) and to a lesser extent on the spatial and temporal distributions of the (precursor) emissions. The burdens of black carbon and especially sea salt become more coherent in ExpB only, because the large ExpA diversity for these two species was caused by few outliers. The experiment also indicated that despite prescribing emission fluxes and size distributions, ambiguities in the implementation in individual models can lead to substantial differences. These results indicate the need for a better understanding of aerosol life cycles at process level (including spatial dispersal and interaction with meteorological parameters) in order to obtain more reliable results from global aerosol simulations. This is particularly important as such model results are used to assess the consequences of specific air pollution abatement strategies

    The sensitivity of aerosol in Europe to two different emission inventories and temporal distribution of emissions

    Get PDF
    The sensitivity to two different emission inventories, injection altitude and temporal variations of anthropogenic emissions in aerosol modelling is studied, using the two way nested global transport chemistry model TM5 focussing on Europe in June and December 2000. The simulations of gas and aerosol concentrations and aerosol optical depth (AOD) with the EMEP and AEROCOM emission inventories are compared with EMEP gas and aerosol surface based measurements, AERONET sun photometers retrievals and MODIS satellite data. For the aerosol precursor gases SO2 and NOx in both months the model results calculated with the EMEP inventory agree better ( overestimated by a factor 1.3 for both SO2 and NOx) with the EMEP measurements than the simulation with the AEROCOM inventory ( overestimated by a factor 2.4 and 1.9, respectively). Besides the differences in total emissions between the two inventories, an important role is also played by the vertical distribution of SO2 and NOx emissions in understanding the differences between the EMEP and AEROCOM inventories. In December NOx and SO2 from both simulations agree within 50% with observations. In June SO4= evaluated with the EMEP emission inventory agrees slightly better with surface observations than the AEROCOM simulation, whereas in December the use of both inventories results in an underestimate of SO4 with a factor 2. Nitrate aerosol measured in summer is not reliable, however in December nitrate aerosol calculations with the EMEP and AEROCOM emissions agree with 30%, and 60%, respectively with the filter measurements. Differences are caused by the total emissions and the temporal distribution of the aerosol precursor gases NOx and NH3. Despite these differences, we show that the column integrated AOD is less sensitive to the underlying emission inventories. Calculated AOD values with both emission inventories underestimate the observed AERONET AOD values by 20 - 30%, whereas a case study using MODIS data shows a high spatial agreement. Our evaluation of the role of temporal distribution of anthropogenic emissions on aerosol calculations shows that the daily and weekly temporal distributions of the emissions are only important for NOx, NH3 and aerosol nitrate. However, for all aerosol species SO4=, NH4+, POM, BC, as well as for AOD, the seasonal temporal variations used in the emission inventory are important. Our study shows the value of including at least seasonal information on anthropogenic emissions, although from a comparison with a range of measurements it is often difficult to firmly identify the superiority of specific emission inventories, since other modelling uncertainties, e. g. related to transport, aerosol removal, water uptake, and model resolution, play a dominant role

    Surface Freshwater Limitation Explains Worst Rice Production Anomaly in India in 2002

    Get PDF
    India is the second-most populous country and the second-most important producer of rice of the world. Most Indian rice production depends on monsoon timing and dynamics. In 2002, the lowest monsoon precipitation of the last 130+ years was observed. It coincided with the worst rice production anomaly recorded by FAOSTAT from 1961 to 2014. In that year, freshwater limitation was blamed as responsible for the yield losses in the southeastern coastal regions. Given the important implication for local food security and international market stability, we here investigate the specific mechanisms behind the effects of this extreme meteorological drought on rice yield at the national and regional levels. To this purpose, we integrate output from the hydrological model, surface, and satellite observations for the different rice cropping cycles into state-of-the-art and novel climate indicators. In particular, we adopt the standardized precipitation evapotranspiration index (SPEI) as an indicator of drought due to the local surface water balance anomalies (i.e., precipitation and evapotranspiration). We propose a new indicator of the renewable surface freshwater availability due to non-local sources, i.e., the standardized river discharge index (SDI) based on the anomalies of modelled river discharge data. We compare these indicators to the soil moisture observations retrieved from satellites. We link all diagnostics to the recorded yields at the national and regional level, quantifying the long-term correlations and the best match of the 2002 anomaly. Our findings highlight the need for integrating non-local surface freshwater dynamics with local rainfall variability to determine the soil moisture conditions in rice fields for yields assessment, modeling, and forecasting

    An AeroCom initial assessment – optical properties in aerosol component modules of global models

    Get PDF
    The AeroCom exercise diagnoses multi-component aerosol modules in global modeling. In an initial assessment simulated global distributions for mass and mid-visible aerosol optical thickness (aot) were compared among 20 different modules. Model diversity was also explored in the context of previous comparisons. For the component combined aot general agreement has improved for the annual global mean. At 0.11 to 0.14, simulated aot values are at the lower end of global averages suggested by remote sensing from ground (AERONET ca. 0.135) and space (satellite composite ca. 0.15). More detailed comparisons, however, reveal that larger differences in regional distribution and significant differences in compositional mixture remain. Of particular concern are large model diversities for contributions by dust and carbonaceous aerosol, because they lead to significant uncertainty in aerosol absorption (aab). Since aot and aab, both, influence the aerosol impact on the radiative energy-balance, the aerosol (direct) forcing uncertainty in modeling is larger than differences in aot might suggest. New diagnostic approaches are proposed to trace model differences in terms of aerosol processing and transport: These include the prescription of common input (e.g. amount, size and injection of aerosol component emissions) and the use of observational capabilities from ground (e.g. measurements networks) or space (e.g. correlations between aerosol and clouds)

    Atmospheric Organic Material and the Nutrients Nitrogen and Phosphorus It Carries to the Ocean

    Get PDF
    [1] The global tropospheric budget of gaseous and particulate non‐methane organic matter (OM) is re‐examined to provide a holistic view of the role that OM plays in transporting the essential nutrients nitrogen and phosphorus to the ocean. A global 3‐dimensional chemistry‐transport model was used to construct the first global picture of atmospheric transport and deposition of the organic nitrogen (ON) and organic phosphorus (OP) that are associated with OM, focusing on the soluble fractions of these nutrients. Model simulations agree with observations within an order of magnitude. Depending on location, the observed water soluble ON fraction ranges from ∼3% to 90% (median of ∼35%) of total soluble N in rainwater; soluble OP ranges from ∼20–83% (median of ∼35%) of total soluble phosphorus. The simulations suggest that the global ON cycle has a strong anthropogenic component with ∼45% of the overall atmospheric source (primary and secondary) associated with anthropogenic activities. In contrast, only 10% of atmospheric OP is emitted from human activities. The model‐derived present‐day soluble ON and OP deposition to the global ocean is estimated to be ∼16 Tg‐N/yr and ∼0.35 Tg‐P/yr respectively with an order of magnitude uncertainty. Of these amounts ∼40% and ∼6%, respectively, are associated with anthropogenic activities, and 33% and 90% are recycled oceanic materials. Therefore, anthropogenic emissions are having a greater impact on the ON cycle than the OP cycle; consequently increasing emissions may increase P‐limitation in the oligotrophic regions of the world\u27s ocean that rely on atmospheric deposition as an important nutrient source

    Observation- and Model-Based Estimates of Particulate Dry Nitrogen Deposition to the Oceans

    Get PDF
    © Author(s) 2017. This is an Open Access article distributed under the Creative Commons Attribution License CC BY 3.0 ( https://creativecommons.org/licenses/by/3.0/ ). Published by Copernicus Publications on behalf of the European Geosciences Union.Anthropogenic nitrogen (N) emissions to the atmosphere have increased significantly the deposition of nitrate (NO3−) and ammonium (NH4+) to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of the impacts of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work,  ∼  2900 observations of aerosol NO3− and NH4+ concentrations, acquired from sampling aboard ships in the period 1995–2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific) were selected, in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N, due to uptake of nitrogen oxides (NOx) on mineral surfaces. Assessment of the impacts of atmospheric N deposition on the ocean requires atmospheric chemical transport models to report deposition fluxes; however, these fluxes cannot be measured over the ocean. Modelling studies such as the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), which only report deposition flux, are therefore very difficult to validate for dry deposition. Here, the available observational data were averaged over a 5° × 5° grid and compared to ACCMIP dry deposition fluxes (ModDep) of oxidised N (NOy) and reduced N (NHx) and to the following parameters from the Tracer Model 4 of the Environmental Chemical Processes Laboratory (TM4): ModDep for NOy, NHx and particulate NO3− and NH4+, and surface-level particulate NO3− and NH4+ concentrations. As a model ensemble, ACCMIP can be expected to be more robust than TM4, while TM4 gives access to speciated parameters (NO3− and NH4+) that are more relevant to the observed parameters and which are not available in ACCMIP. Dry deposition fluxes (CalDep) were calculated from the observed concentrations using estimates of dry deposition velocities. Model–observation ratios (RA, n), weighted by grid-cell area and number of observations, were used to assess the performance of the models. Comparison in the three study regions suggests that TM4 overestimates NO3− concentrations (RA, n =  1.4–2.9) and underestimates NH4+ concentrations (RA, n =  0.5–0.7), with spatial distributions in the tropical Atlantic and northern Indian Ocean not being reproduced by the model. In the case of NH4+ in the Indian Ocean, this discrepancy was probably due to seasonal biases in the sampling. Similar patterns were observed in the various comparisons of CalDep to ModDep (RA, n =  0.6–2.6 for NO3−, 0.6–3.1 for NH4+). Values of RA, n for NHx CalDep–ModDep comparisons were approximately double the corresponding values for NH4+ CalDep–ModDep comparisons due to the significant fraction of gas-phase NH3 deposition incorporated in the TM4 and ACCMIP NHx model products. All of the comparisons suffered due to the scarcity of observational data and the large uncertainty in dry deposition velocities used to derive deposition fluxes from concentrations. These uncertainties have been a major limitation on estimates of the flux of material to the oceans for several decades. Recommendations are made for improvements in N deposition estimation through changes in observations, modelling and model–observation comparison procedures. Validation of modelled dry deposition requires effective comparisons to observable aerosol-phase species' concentrations, and this cannot be achieved if model products only report dry deposition flux over the ocean.Peer reviewedFinal Published versio
    corecore