10 research outputs found

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Data_Sheet_1_Trade-offs in organic nutrient management strategies across mixed vegetable farms in Southwest British Columbia.docx

    No full text
    Balancing economic and environmental objectives can present trade-offs for organic farmers maximizing crop yields while maintaining core principles of ecology and health. A primary challenge for achieving this balance is nitrogen (N) and phosphorus (P) management. Meeting crop N requirements with compost can build soil carbon (C) and soil health but often over-applies P and increases soil P and associated environmental risks. Alternatively, high-N organic fertilizers can provide N without surplus P but can be expensive and lack C inputs that composts supply. We evaluated these potential trade-offs in 2-year field trials on 20 mixed vegetable farms across three regions of Southwest British Columbia, Canada, capturing a range of climatic-edaphic conditions and organic amendments. Three nutrient management strategies were evaluated: High Compost: compost applied to meet crop N removal, Low Compost + N: compost applied to meet crop P removal plus an organic fertilizer to meet crop N removal, and Typical: varying combinations of composts and/or organic fertilizers (“typical” nutrient application on the farm). Nutrient strategies were evaluated in terms of yield, input costs, and soil properties [permanganate oxidizable C (labile C responsive to soil management), and post-season available N and P]. Soil P was 21% higher with High Compost than Low Compost + N. In one region characterized by inexpensive but nutrient-rich composts and soils high in P, input costs were lowest with Typical, but in the second year, High Compost outperformed Typical in crop yield. Principal component analysis showed a divergence in post-season NO3- between nutrient strategies in relation to compost and soil properties: High Compost using high-N composts increased post-season NO3- (0–30 cm), whereas relative yields in High Compost tended to be higher on farms with lower soil C and lower C:N composts, while yields with Typical were higher under opposite conditions but associated with higher post-season NO3-. Combining input types (e.g., Low Compost + N) can meet environmental objectives in reducing surplus soil P without short-term yield or cost trade-offs compared to High Compost. However, maintaining soil C needs to be investigated to achieve effective ecological nutrient management in organic vegetable production with improved nutrient balances.</p

    Coordinated Health Care Interventions for Childhood Asthma Gaps in Outcomes (CHICAGO) plan

    No full text
    Background: Evidence-based strategies to improve outcomes in minority children with uncontrolled asthma discharged from the emergency department (ED) are needed. Objectives: This multicenter pragmatic clinical trial was designed to compare an ED-only intervention (decision support tool), an ED-only intervention and home visits by community health workers for 6 months (ED-plus-home), and enhanced usual care (UC). Methods: Children aged 5 to 11 years with uncontrolled asthma were enrolled. The change over 6 months in the Patient-Reported Outcomes Measurement Information System Asthma Impact Scale score in children and Satisfaction with Participation in Social Roles score in caregivers were the primary outcomes. The secondary outcomes included guideline-recommended ED discharge care and self-management. Results: Recruitment was significantly lower than expected (373 vs 640 expected). Of the 373 children (64% Black and 31% Latino children), only 63% completed the 6-month follow-up visit. In multivariable analyses that accounted for missing data, the adjusted odds ratios and 98% CIs for differences in Asthma Impact Scores or caregivers’ Satisfaction with Participation in Social Roles scores were not significant. However, guideline-recommended ED discharge care was significantly improved in the intervention groups versus in the UC group, and self-management behaviors were significantly improved in the ED-plus-home group versus in the ED-only and UC groups. Conclusions: The ED-based interventions did not significantly improve the primary clinical outcomes, although the study was likely underpowered. Although guideline-recommended ED discharge care and self-management did improve, their effect on clinical outcomes needs further study

    Adaptive Responses of Vibrios

    No full text

    Characterization of JWST science performance from commissioning: National Aeronautics and Space Administration European Space Agency Canadian Space Agency

    No full text

    The Science Performance of JWST as Characterized in Commissioning

    No full text
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies

    Characterization of JWST science performance from commissioning: National Aeronautics and Space Administration European Space Agency Canadian Space Agency

    No full text

    The James Webb Space Telescope Mission

    No full text
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4 m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5 m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 yr, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit
    corecore