441 research outputs found

    Decoupling 802.11B From the Partition Table in Erasure Coding

    Full text link
    Many cyberneticists would agree that, had it not been for extensible epistemologies, the evaluation of superblocks might never have occurred. In this paper, authors disprove the improvement of context-free grammar, demonstrates the technical importance of distributed systems. In our research, we concentrate our efforts on showing that IPv4 and erasure coding are never incompatible

    Comparison of cloud models for Brown Dwarfs

    Full text link
    A test case comparison is presented for different dust cloud model approaches applied in brown dwarfs and giant gas planets. We aim to achieve more transparency in evaluating the uncertainty inherent to theoretical modelling. We show in how far model results for characteristic dust quantities vary due to different assumptions. We also demonstrate differences in the spectral energy distributions resulting from our individual cloud modelling in 1D substellar atmosphere simulationsComment: 5 pages, Proceeding to "Exoplantes: Detection, Formation, Dynamics", eds. Ferraz-Mello et

    The Influence of Dust Formation Modelling on Na I and K I Line Profiles in Substellar Atmospheres

    Full text link
    We aim to understand the correlation between cloud formation and alkali line formation in substellar atmospheres.We perform line profile calculations for Na I and K I based on the coupling of our kinetic model for the formation and composition of dust grains with 1D radiative transfer calculations in atmosphere models for brown dwarfs and giant gas planets. The Na I and K I line profiles sensibly depend on the way clouds are treated in substellar atmosphere simulations. The kinetic dust formation model results in the highest pseudo-continuum compared to the limiting cases.Comment: 5 pages, Accepted for publication in MNRA

    Loop operators and S-duality from curves on Riemann surfaces

    Full text link
    We study Wilson-'t Hooft loop operators in a class of N=2 superconformal field theories recently introduced by Gaiotto. In the case that the gauge group is a product of SU(2) groups, we classify all possible loop operators in terms of their electric and magnetic charges subject to the Dirac quantization condition. We then show that this precisely matches Dehn's classification of homotopy classes of non-self-intersecting curves on an associated Riemann surface--the same surface which characterizes the gauge theory. Our analysis provides an explicit prediction for the action of S-duality on loop operators in these theories which we check against the known duality transformation in several examples.Comment: 41 page

    Nature of magnetism in thiol-capped gold nanoparticles investigated with Muon spin rotation

    Get PDF
    © 2018 Author(s). Muon spin rotation/relaxation measurements show clear evidence for magnetism in 2.2 nm gold nanoparticles capped with butanethiol. At low temperatures (1.8 K), there is significant spin relaxation which decreases as a function of both the applied longitudinal magnetic field and increasing temperature. The results indicate that there are spatially inhomogeneous electronic moments that fluctuate with a wide distribution of correlation times. Possible explanations are discussed

    A giant ectopic hidradenoma papilliferum in a Niger delta region of Nigeria

    Get PDF
    Hidradenoma papilliferum is a known example of adnexal skin tumours with apocrine differentiation. It is a rare benign tumour which tends to arise from areas with rich concentration of aporine glands such as anogenital region, vulval, perineal, axillae, and periumbilical areas. In this report, the tumour was found in the upper outer quadrant of left breast, being one of the ectopic sites for this tumour. Contrary to most reports where male preponderance was popular for ectopic hidradenoma papilliferum, the patient in this report is a 71-year-old female. Considering the location of this tumour in this report, the likely histopathological differential diagnoses such as tubular apocrine adenoma, clear cell (apocrine) adenoma, lipoma, intraductal papilloma and papillary carcinoma of the breast should be considered for exclusion. This is the first reported case of a giant ectopic hidradenoma papilliferum of the breast in a Niger Delta region of Nigeria which also highlights the role of fine needle aspiration and cytology in the diagnosis of breast lesions

    A comparison of chemistry and dust cloud formation in ultracool dwarf model atmospheres

    Full text link
    The atmospheres of substellar objects contain clouds of oxides, iron, silicates, and other refractory condensates. Water clouds are expected in the coolest objects. The opacity of these `dust' clouds strongly affects both the atmospheric temperature-pressure profile and the emergent flux. Thus any attempt to model the spectra of these atmospheres must incorporate a cloud model. However the diversity of cloud models in atmospheric simulations is large and it is not always clear how the underlying physics of the various models compare. Likewise the observational consequences of different modeling approaches can be masked by other model differences, making objective comparisons challenging. In order to clarify the current state of the modeling approaches, this paper compares five different cloud models in two sets of tests. Test case 1 tests the dust cloud models for a prescribed L, L--T, and T-dwarf atmospheric (temperature T, pressure p, convective velocity vconv)-structures. Test case 2 compares complete model atmosphere results for given (effective temperature Teff, surface gravity log g). All models agree on the global cloud structure but differ in opacity-relevant details like grain size, amount of dust, dust and gas-phase composition. Comparisons of synthetic photometric fluxes translate into an modelling uncertainty in apparent magnitudes for our L-dwarf (T-dwarf) test case of 0.25 < \Delta m < 0.875 (0.1 < \Delta m M 1.375) taking into account the 2MASS, the UKIRT WFCAM, the Spitzer IRAC, and VLT VISIR filters with UKIRT WFCAM being the most challenging for the models. (abr.)Comment: 22 pages, 17 figures, MNRAS 2008, accepted, (minor grammar/typo corrections

    Spin depolarization of muonium in mesoporous silica

    Get PDF
    We report muon spin rotation/relaxation measurements of muonium in mesoporous silica (SBA-15) with a high specific surface area of 600 m2/g. Up to 70 percent of the incoming muons form muonium and escape efficiently into the open pores at all temperatures between 3 and 300K. We present evidence that the interaction with the silica surfaces involves both spin exchange and a transition to a diamagnetic state, possibly due to dangling bonds on the surface. At very low temperatures, below 20K, the interaction between muonium and the silica surfaces is suppressed due to a He film coating the surfaces. These results indicate that it should be possible to use muonium to probe the surfaces of uncapped nanoparticles supported in silica

    Intercomparison of low- and high-resolution infrared spectrometers for ground-based solar remote sensing measurements of total column concentrations of CO2, CH4, and CO

    Get PDF
    The Total Carbon Column Observing Network (TCCON) is the baseline ground-based network of instruments that record solar absorption spectra from which accurate and precise column-averaged dry-air mole fractions of CO2_{2} (XCO2_{2}), CH4_{4} (XCH4_{4}), CO (XCO), and other gases are retrieved. The TCCON data have been widely used for carbon cycle science and validation of satellites measuring greenhouse gas concentrations globally. The number of stations in the network (currently about 25) is limited and has a very uneven geographical coverage: the stations in the Northern Hemisphere are distributed mostly in North America, Europe, and Japan, and only 20 % of the stations are located in the Southern Hemisphere, leaving gaps in the global coverage. A denser distribution of ground-based solar absorption measurements is needed to improve the representativeness of the measurement data for various atmospheric conditions (humid, dry, polluted, presence of aerosol), various surface conditions such as high albedo (>0.4) and very low albedo, and a larger latitudinal distribution. More stations in the Southern Hemisphere are also needed, but a further expansion of the network is limited by its costs and logistical requirements. For this reason, several groups are investigating supplemental portable low-cost instruments. The European Space Agency (ESA) funded campaign Fiducial Reference Measurements for Ground-Based Infrared Greenhouse Gas Observations (FRM4GHG) at the Sodankylä TCCON site in northern Finland aims to characterise the assessment of several low-cost portable instruments for precise solar absorption measurements of XCO2_{2}, XCH4_{4}, and XCO. The test instruments under investigation are three Fourier transform spectrometers (FTSs): a Bruker EM27/SUN, a Bruker IRcube, and a Bruker Vertex70, as well as a laser heterodyne spectroradiometer (LHR) developed by the UK Rutherford Appleton Laboratory. All four remote sensing instruments performed measurements simultaneously next to the reference TCCON instrument, a Bruker IFS 125HR, for a full year in 2017. The TCCON FTS was operated in its normal high-resolution mode (TCCON data set) and in a special low-resolution mode (HR125LR data set), similar to the portable spectrometers. The remote sensing measurements are complemented by regular AirCore launches performed from the same site. They provide in situ vertical profiles of the target gas concentrations as auxiliary reference data for the column retrievals, which are traceable to the WMO SI standards. The reference measurements performed with the Bruker IFS 125HR were found to be affected by non-linearity of the indium gallium arsenide (InGaAs) detector. Therefore, a non-linearity correction of the 125HR data was performed for the whole campaign period and compared with the test instruments and AirCore. The non-linearity-corrected data (TCCONmod data set) show a better match with the test instruments and AirCore data compared to the non-corrected reference data. The time series, the bias relative to the reference instrument and its scatter, and the seasonal and the day-to-day variations of the target gases are shown and discussed. The comparisons with the HR125LR data set gave a useful analysis of the resolution-dependent effects on the target gas retrieval. The solar zenith angle dependence of the retrievals is shown and discussed. The intercomparison results show that the LHR data have a large scatter and biases with a strong diurnal variation relative to the TCCON and other FTS instruments. The LHR is a new instrument under development, and these biases are currently being investigated and addressed. The campaign helped to characterise and identify instrumental biases and possibly retrieval biases, which are currently under investigation. Further improvements of the instrument are ongoing. The EM27/SUN, the IRcube, the modified Vertex70, and the HR125LR provided stable and precise measurements of the target gases during the campaign with quantified small biases. The bias dependence on the humidity along the measurement line of sight has been investigated and no dependence was found. These three portable low-resolution FTS instruments are suitable to be used for campaign deployment or long-term measurements from any site and offer the ability to complement the TCCON and expand the global coverage of ground-based reference measurements of the target gases
    corecore