The atmospheres of substellar objects contain clouds of oxides, iron,
silicates, and other refractory condensates. Water clouds are expected in the
coolest objects. The opacity of these `dust' clouds strongly affects both the
atmospheric temperature-pressure profile and the emergent flux. Thus any
attempt to model the spectra of these atmospheres must incorporate a cloud
model. However the diversity of cloud models in atmospheric simulations is
large and it is not always clear how the underlying physics of the various
models compare. Likewise the observational consequences of different modeling
approaches can be masked by other model differences, making objective
comparisons challenging. In order to clarify the current state of the modeling
approaches, this paper compares five different cloud models in two sets of
tests. Test case 1 tests the dust cloud models for a prescribed L, L--T, and
T-dwarf atmospheric (temperature T, pressure p, convective velocity
vconv)-structures. Test case 2 compares complete model atmosphere results for
given (effective temperature Teff, surface gravity log g). All models agree on
the global cloud structure but differ in opacity-relevant details like grain
size, amount of dust, dust and gas-phase composition. Comparisons of synthetic
photometric fluxes translate into an modelling uncertainty in apparent
magnitudes for our L-dwarf (T-dwarf) test case of 0.25 < \Delta m < 0.875 (0.1
< \Delta m M 1.375) taking into account the 2MASS, the UKIRT WFCAM, the Spitzer
IRAC, and VLT VISIR filters with UKIRT WFCAM being the most challenging for the
models. (abr.)Comment: 22 pages, 17 figures, MNRAS 2008, accepted, (minor grammar/typo
corrections