159 research outputs found

    Brain-Computer Interface: comparison of two control modes to drive a virtual robot

    Get PDF
    A Brain-Computer Interface (BCI) is a system that enables communication and control that is not based on muscular movements, but on brain activity. Some of these systems are based on discrimination of different mental tasks; usually they match the number of mental tasks to the number of control commands. Previous research at the University of Málaga (UMA-BCI) have proposed a BCI system to freely control an external device, letting the subjects choose among several navigation commands using only one active mental task (versus any other mental activity). Although the navigation paradigm proposed in this system has been proved useful for continuous movements, if the user wants to move medium or large distances, he/she needs to keep the effort of the MI task in order to keep the command. In this way, the aim of this work was to test a navigation paradigm based on the brain-switch mode for ‘forward’ command. In this mode, the subjects used the mental task to switch their state on /off: they stopped if they were moving forward and vice versa. Initially, twelve healthy and untrained subjects participated in this study, but due to a lack of control in previous session, only four subjects participated in the experiment, in which they had to control a virtual robot using two paradigms: one based on continuous mode and another based on switch mode. Preliminary results show that both paradigms can be used to navigate through virtual environments, although with the first one the times needed to complete a path were notably lower.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    BRAIN-COMPUTER INTERFACE: COMPARISON OF TWO CONTROL MODES TO DRIVE A VIRTUAL ROBOT

    Get PDF
    A Brain-Computer Interface (BCI) is a system that enables communication and control that is not based on muscular movements, but on brain activity. Some of these systems are based on discrimination of different mental tasks; usually they match the number of mental tasks to the number of control commands. Previous research at the University of Málaga (UMABCI) have proposed a BCI system to freely control an external device, letting the subjects choose among several navigation commands using only one active mental task (versus any other mental activity). Although the navigation paradigm proposed in this system has been proved useful for continuous movements, if the user wants to move medium or large distances, he/she needs to keep the effort of the MI task in order to keep the command. In this way, the aim of this work was to test a navigation paradigm based on the brain-switch mode for ‘forward’ command. In this mode, the subjects used the mental task to switch their state on /off: they stopped if they were moving forward and vice versa. Initially, twelve healthy and untrained subjects participated in this study, but due to a lack of control in previous session, only four subjects participated in the experiment, in which they had to control a virtual robot using two paradigms: one based on continuous mode and another based on switch mode. Preliminary results show that both paradigms can be used to navigate through virtual environments, although with the first one the times needed to complete a path were notably lower

    BRAIN-COMPUTER INTERFACE: COMPARISON OF TWO CONTROL MODES TO DRIVE A VIRTUAL ROBOT

    Get PDF
    A Brain-Computer Interface (BCI) is a system that enables communication and control that is not based on muscular movements, but on brain activity. Some of these systems are based on discrimination of different mental tasks; usually they match the number of mental tasks to the number of control commands. Previous research at the University of Málaga (UMABCI) have proposed a BCI system to freely control an external device, letting the subjects choose among several navigation commands using only one active mental task (versus any other mental activity). Although the navigation paradigm proposed in this system has been proved useful for continuous movements, if the user wants to move medium or large distances, he/she needs to keep the effort of the MI task in order to keep the command. In this way, the aim of this work was to test a navigation paradigm based on the brain-switch mode for ‘forward’ command. In this mode, the subjects used the mental task to switch their state on /off: they stopped if they were moving forward and vice versa. Initially, twelve healthy and untrained subjects participated in this study, but due to a lack of control in previous session, only four subjects participated in the experiment, in which they had to control a virtual robot using two paradigms: one based on continuous mode and another based on switch mode. Preliminary results show that both paradigms can be used to navigate through virtual environments, although with the first one the times needed to complete a path were notably lower

    The role of the peripheral and central nervous systems in rotator cuff disease

    Full text link
    Rotator cuff (RC) disease is an extremely common condition associated with shoulder pain, reduced functional capacities and impaired quality of life. It primarily involves alterations in tendon health and mechanical properties that can ultimately lead to tendon failure. RC tendon tears induce progressive muscular changes that negatively impact surgical reparability of the RC tendons and clinical outcomes. At the same time, a significant base of clinical data suggests a relatively weak relationship between RC integrity and clinical presentation, emphasizing the multifactorial aspects of RC disease. This review aims to summarize the potential contribution of peripheral, spinal and supraspinal neural factors that may: (i) exacerbate structural and functional muscle changes induced by tendon tear, (ii) compromise the reversal of these changes during surgery and rehabilitation, (iii) contribute to pain generation and persistence of pain, iv) impair shoulder function through reduced proprioception, kinematics and muscle recruitment, and iv) help to explain interindividual differences and response to treatment. Given the current clinical and scientific interest in peripheral nerve injury in the context of RC disease and surgery, we carefully reviewed this body of literature with a particular emphasis for suprascapular neuropathy that has generated a large number of studies in the past decade. Within this process, we highlight the gaps in current knowledge and suggest research avenues for scientists and clinicians

    Préface

    No full text
    Debeyre Guy. Préface. In: Revue du Nord, tome 40, n°158, Avril-juin 1958. Numéro spécial dédié à la mémoire de Raymond Monier. pp. 137-138

    Préface

    No full text
    Debeyre Guy. Préface. In: Revue du Nord, tome 40, n°158, Avril-juin 1958. Numéro spécial dédié à la mémoire de Raymond Monier. pp. 137-138

    L’expansion universitaire dans la région depuis la seconde guerre mondiale

    No full text
    Sans remonter à 1562, et à la création de l’Université de Douai, par lettres patentes de Philippe II d’Espagne et par une bulle de Pie IV, pour enrayer les progrès de l’hérésie aux Pays Bas, je m’arrêterai à la loi du 14 juin 1854 qui a créé, sur le territoire national seize Académies, circonscriptions dont la dénomination est volontairement originale. Chaque Académie, comprenant un certain nombre de départements, est dirigée par un « Recteur d’Académie » assisté d’inspecteurs d’Académie, cha..
    • …
    corecore