10 research outputs found

    Ground-Based Transmission Spectroscopy with FORS2: A featureless optical transmission spectrum and detection of H2O for the ultra-hot Jupiter WASP-103b

    Get PDF
    We report ground-based transmission spectroscopy of the highly irradiated and ultra-short period hot-Jupiter WASP-103b covering the wavelength range ≈ 400 – 600 nm using the FORS2 instrument on the Very Large Telescope. The light curves show significant time-correlated noise which is mainly invariant in wavelength and which we model using a Gaussian process. The precision of our transmission spectrum is improved by applying a common-mode correction derived from the white light curve, reaching typical uncertainties in transit depth of ≈ 2 × 10−4 in wavelength bins of 15 nm. After correction for flux contamination from a blended companion star, our observations reveal a featureless spectrum across the full range of the FORS2 observations and we are unable to confirm the Na absorption previously inferred using Gemini/GMOS or the strong Rayleigh scattering observed using broad-band light curves. We performed a Bayesian atmospheric retrieval on the full optical-infrared transmission spectrum using the additional data from Gemini/GMOS, HST/WFC3 and Spitzer observations and recover evidence for H2O absorption at the 4.0 σ level. However, our observations are not able to completely rule out the presence of Na, which is found at 2.0 σ in our retrievals. This may in part be explained by patchy/inhomogeneous clouds or hazes damping any absorption features in our FORS2 spectrum, but an inherently small scale height also makes this feature challenging to probe from the ground. Our results nonetheless demonstrate the continuing potential of ground-based observations for investigating exoplanet atmospheres and emphasise the need for the application of consistent and robust statistical techniques to low-resolution spectra in the presence of instrumental systematics

    An absolute sodium abundance for a cloud-free 'hot Saturn' exoplanet.

    Get PDF
    Broad absorption signatures from alkali metals, such as the sodium (Na I) and potassium (K I) resonance doublets, have long been predicted in the optical atmospheric spectra of cloud-free irradiated gas giant exoplanets1-3. However, observations have revealed only the narrow cores of these features rather than the full pressure-broadened profiles4-6. Cloud and haze opacity at the day-night planetary terminator are considered to be responsible for obscuring the absorption-line wings, which hinders constraints on absolute atmospheric abundances7-9. Here we report an optical transmission spectrum for the 'hot Saturn' exoplanet WASP-96b obtained with the Very Large Telescope, which exhibits the complete pressure-broadened profile of the sodium absorption feature. The spectrum is in excellent agreement with cloud-free, solar-abundance models assuming chemical equilibrium. We are able to measure a precise, absolute sodium abundance of logΔNa = [Formula: see text], and use it as a proxy for the planet's atmospheric metallicity relative to the solar value (Zp/Zʘ = [Formula: see text]). This result is consistent with the mass-metallicity trend observed for Solar System planets and exoplanets10-12

    Exocomets from a Solar System Perspective

    Get PDF
    Exocomets are small bodies releasing gas and dust which orbit stars other than the Sun. Their existence was first inferred from the detection of variable absorption features in stellar spectra in the late 1980s using spectroscopy. More recently, they have been detected through photometric transits from space, and through far-IR/mm gas emission within debris disks. As (exo)comets are considered to contain the most pristine material accessible in stellar systems, they hold the potential to give us information about early stage formation and evolution conditions of extra solar systems. In the solar system, comets carry the physical and chemical memory of the protoplanetary disk environment where they formed, providing relevant information on processes in the primordial solar nebula. The aim of this paper is to compare essential compositional properties between solar system comets and exocomets to allow for the development of new observational methods and techniques. The paper aims to highlight commonalities and to discuss differences which may aid the communication between the involved research communities and perhaps also avoid misconceptions. The compositional properties of solar system comets and exocomets are summarized before providing an observational comparison between them. Exocomets likely vary in their composition depending on their formation environment like solar system comets do, and since exocomets are not resolved spatially, they pose a challenge when comparing them to high fidelity observations of solar system comets. Observations of gas around main sequence stars, spectroscopic observations of “polluted” white dwarf atmospheres and spectroscopic observations of transiting exocomets suggest that exocomets may show compositional similarities with solar system comets. The recent interstellar visitor 2I/Borisov showed gas, dust and nuclear properties similar to that of solar system comets. This raises the tantalising prospect that observations of interstellar comets may help bridge the fields of exocomet and solar system comets

    The PLATO 2.0 mission

    Get PDF
    PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4-16 mag). It focusses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science

    Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 Όm★

    No full text
    We report a 4.8σ detection of water absorption features in the day side spectrum of the hot Jupiter HD 189733 b. We used high-resolution (R ∌ 100 000) spectra taken at 3.2 Όm with CRIRES on the VLT to trace the radial-velocity shift of the water features in the planet's day side atmosphere during 5 h of its 2.2 d orbit as it approached secondary eclipse. Despite considerable telluric contamination in this wavelength regime, we detect the signal within our uncertainties at the expected combination of systemic velocity (⁠Vsys=−3+5−6 km s−1) and planet orbital velocity (⁠Kp=154+14−10 km s−1), and determine a H2O line contrast ratio of (1.3 ± 0.2) × 10−3 with respect to the stellar continuum. We find no evidence of significant absorption or emission from other carbon-bearing molecules, such as methane, although we do note a marginal increase in the significance of our detection to 5.1σ with the inclusion of carbon dioxide in our template spectrum. This result demonstrates that ground-based, high-resolution spectroscopy is suited to finding not just simple molecules like CO, but also to more complex molecules like H2O even in highly telluric contaminated regions of the Earth's transmission spectrum. It is a powerful tool that can be used for conducting an immediate census of the carbon- and oxygen-bearing molecules in the atmospheres of giant planets, and will potentially allow the formation and migration history of these planets to be constrained by the measurement of their atmospheric C/O ratios

    Ground-based transmission spectroscopy with FORS2: A featureless optical transmission spectrum and detection of H<inf>2</inf>O for the ultra-hot Jupiter WASP-103b

    Get PDF
    We report ground-based transmission spectroscopy of the highly irradiated and ultra-short period hot-Jupiter WASP-103b covering the wavelength range ≈\approx 400-600 nm using the FORS2 instrument on the Very Large Telescope. The light curves show significant time-correlated noise which is mainly invariant in wavelength and which we model using a Gaussian process. The precision of our transmission spectrum is improved by applying a common-mode correction derived from the white light curve, reaching typical uncertainties in transit depth of ≈\approx 2x10−4^{-4} in wavelength bins of 15 nm. After correction for flux contamination from a blended companion star, our observations reveal a featureless spectrum across the full range of the FORS2 observations and we are unable to confirm the Na absorption previously inferred using Gemini/GMOS or the strong Rayleigh scattering observed using broad-band light curves. We performed a Bayesian atmospheric retrieval on the full optical-infrared transmission spectrum using the additional data from Gemini/GMOS, HST/WFC3 and Spitzer observations and recover evidence for H2_2O absorption at the 4.0σ\sigma level. However, our observations are not able to completely rule out the presence of Na, which is found at 2.0σ\sigma in our retrievals. This may in part be explained by patchy/inhomogeneous clouds or hazes damping any absorption features in our FORS2 spectrum, but an inherently small scale height also makes this feature challenging to probe from the ground. Our results nonetheless demonstrate the continuing potential of ground-based observations for investigating exoplanet atmospheres and emphasise the need for the application of consistent and robust statistical techniques to low-resolution spectra in the presence of instrumental systematics

    Photochemistry of Terrestrial Exoplanet Atmospheres

    No full text
    Terrestrial exoplanets are exciting objects to study because they could be potential habitats for extraterrestrial life. Both the search and the characterization of terrestrial exoplanets are flourishing. Particularly, NASA’s Kepler spacecraft has discovered Earth-sized planets receiving similar amount of radiative heat as Earth. Central in the studies of terrestrial exoplanets is to characterize their atmospheres and to search for potential biosignature gases (the atmospheric components that indicate biogenic surface emissions). To achieve this goal, a deep understanding of the key physical and chemical processes that control the atmospheric composition and the atmosphere-surface interaction is pivotal
    corecore