94 research outputs found

    Live quantitative monitoring of mineral deposition in stem cells using tetracycline hydrochloride

    Get PDF
    The final stage of in vitro osteogenic differentiation is characterized by the production of mineral deposits containing calcium cations and inorganic phosphates, which populate the extracellular matrix surrounding the cell monolayer. Conventional histological techniques for the assessment of mineralization, such as Von Kossa and Alizarin Red S staining, are end-point techniques requiring cell fixation. Moreover, in both cases staining quantitation requires dye extraction which irreversibly alters the ECM conformation and structure, therefore preventing the use of the sample for further analysis. In this study, the use of Tetracycline hydrochloride (TC) is proposed for the non-destructive staining, quantitation and imaging of mineralizing bone-like nodules in live cultures of human bone marrow mesenchymal stem cells (MSCs) cultured under osteogenic conditions. Overnight administration of TC to living cells was shown not to alter the metabolic activity or the progression of cell differentiation. When applied to differentiating cultures, cell exposure to serial doses of TC was found to produce quantifiable fluorescence emission specifically in osteogenic cultures. Incubation with TC enabled fluorescence imaging of mineralised areas in live cultures and the combination with other fluorophores using appropriate filters. These results demonstrate that serial TC administration over the differentiation time course provides a qualitative and quantitative tool for the monitoring and evaluation of the differentiation process in live cells

    Live Simultaneous Monitoring of Mineral Deposition and Lipid Accumulation in Differentiating Stem Cells

    Get PDF
    Mesenchymal stem cells (MSCs) are progenitors for bone-forming osteoblasts and lipid-storing adipocytes, two major lineages co-existing in bone marrow. When isolated in vitro, these stem cells recapitulate osteoblast or adipocyte formation if treated with specialised media, modelling how these lineages interact in vivo. Osteogenic differentiation is characterised by mineral deposits accumulating in the extracellular matrix, typically assessed using histological techniques. Adipogenesis occurs with accumulation of intracellular lipids that can be routinely visualised by Oil Red O staining. In both cases, staining requires cell fixation and is thus limited to end-point assessments. Here, a vital staining approach was developed to simultaneously detect mineral deposits and lipid droplets in differentiating cultures. Stem cells induced to differentiate produced mixed cultures containing adipocytes and bone-like nodules, and after two weeks live cultures were incubated with tetracycline hydrochloride and Bodipy to label mineral- and lipid-containing structures, respectively. Fluorescence microscopy showed the simultaneous visualisation of mineralised areas and lipid-filled adipocytes in live cultures. Combined with the nuclear stain Hoechst 33258, this approach further enabled live confocal imaging of adipogenic cells interspersed within the mineralised matrix. This multiplex labelling was repeated at subsequent time-points, demonstrating the potential of this new approach for the real-time high-precision imaging of live stem cells

    Does each bead count? A reduced-cost approach for recovering waterborne protozoa from challenge water using immunomagnetic separation

    Get PDF
    Giardia duodenalis and Cryptosporidium spp. are two of the most prominent aetiological agents of waterborne diseases. Therefore, efficient and affordable methodologies for identifying and quantifying these parasites in water are increasingly necessary. USEPA Method 1623.1 is a widely used and validated protocol for detecting these parasites in water samples. It consists of a concentration step, followed by parasite purification and visualization by immunofluorescence microscopy. Although efficient, this method has a high cost particularly due to the immunomagnetic separation (IMS) step, which is most needed with complex and highly contaminated samples. Based on this, the present study aimed to determine whether it is possible to maintain the efficiency of Method 1623.1 while reducing the amount of beads per reaction, using as a matrix the challenge water recommended by the World Health Organization. As for Giardia cysts, a satisfactory recovery efficiency (RE) was obtained using 50% less IMS beads. This was evaluated both with a commercial cyst suspension (56.1% recovery) and an analytical quality assessment (47.5% recovery). Although RE rates obtained for Cryptosporidium parvum did not meet Method 1623.1 criteria in any of the experimental conditions tested, results presented in this paper indicated the relevance of the described adaptations, even in challenge water. HIGHLIGHTS The high cost of current protozoa detection methods limits their widespread use in limited settings.; Immunomagnetic separation improves detection by cleaning the sample.; Recovery efficiency is maintained for Giardia duodenalis with 50% less beads.; Organisms adhering to beads after dissociation may impact recovery levels.

    Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1

    Get PDF
    The importance of actin dynamics in the activation of the inflammasome is becoming increasingly apparent. IL-1β, which is activated by the inflammasome, is known to be central to the pathogenesis of many monogenic autoinflammatory diseases. However, evidence from an autoinflammatory murine model indicates that IL-18, the other cytokine triggered by inflammasome activity, is important in its own right. In this model, autoinflammation was caused by mutation in the actin regulatory gene WDR1 We report a homozygous missense mutation in WDR1 in two siblings causing periodic fevers with immunodeficiency and thrombocytopenia. We found impaired actin dynamics in patient immune cells. Patients had high serum levels of IL-18, without a corresponding increase in IL-18-binding protein or IL-1β, and their cells also secreted more IL-18 but not IL-1β in culture. We found increased caspase-1 cleavage within patient monocytes indicative of increased inflammasome activity. We transfected HEK293T cells with pyrin and wild-type and mutated WDR1 Mutant protein formed aggregates that appeared to accumulate pyrin; this could potentially precipitate inflammasome assembly. We have extended the findings from the mouse model to highlight the importance of WDR1 and actin regulation in the activation of the inflammasome, and in human autoinflammation

    Clinical impact of a targeted next-generation sequencing gene panel for autoinflammation and vasculitis.

    Get PDF
    BACKGROUND: Monogenic autoinflammatory diseases (AID) are a rapidly expanding group of genetically diverse but phenotypically overlapping systemic inflammatory disorders associated with dysregulated innate immunity. They cause significant morbidity, mortality and economic burden. Here, we aimed to develop and evaluate the clinical impact of a NGS targeted gene panel, the "Vasculitis and Inflammation Panel" (VIP) for AID and vasculitis. METHODS: The Agilent SureDesign tool was used to design 2 versions of VIP; VIP1 targeting 113 genes, and a later version, VIP2, targeting 166 genes. Captured and indexed libraries (QXT Target Enrichment System) prepared for 72 patients were sequenced as a multiplex of 16 samples on an Illumina MiSeq sequencer in 150bp paired-end mode. The cohort comprised 22 positive control DNA samples from patients with previously validated mutations in a variety of the genes; and 50 prospective samples from patients with suspected AID in whom previous Sanger based genetic screening had been non-diagnostic. RESULTS: VIP was sensitive and specific at detecting all the different types of known mutations in 22 positive controls, including gene deletion, small INDELS, and somatic mosaicism with allele fraction as low as 3%. Six/50 patients (12%) with unclassified AID had at least one class 5 (clearly pathogenic) variant; and 11/50 (22%) had at least one likely pathogenic variant (class 4). Overall, testing with VIP resulted in a firm or strongly suspected molecular diagnosis in 16/50 patients (32%). CONCLUSIONS: The high diagnostic yield and accuracy of this comprehensive targeted gene panel validate the use of broad NGS-based testing for patients with suspected AID

    An estimate of the number of tropical tree species

    Get PDF
    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e. at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa

    Native diversity buffers against severity of non-native tree invasions

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2^{1,2}. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4^{3,4}. Here, leveraging global tree databases5,6,7^{5,6,7}, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions

    Evenness mediates the global relationship between forest productivity and richness

    Get PDF
    1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions
    corecore