7 research outputs found

    Mediterranean sea-level reconstruction spanning 1960-2018

    Get PDF
    We have used spatiotemporal Bayesian methods to produce statistically rigorous estimates of sea-level trends in the Mediterranean Sea since 1960 by combining tide gauge and satellite altimetry data. Furthermore, we have also quantified the contributions from sterodynamic sea-level change, land-mass changes and glacial isostatic adjustment to the trends

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Evaluation of sea state products from the Sentinel-3A and Sentinel-3B tandem phase

    No full text
    Sentinel-3A (S3A) was launched in February 2016 and routinely provides data on ocean wind and waves (significant wave height/SWH, Sigma0 and wind speed). In April 2018, S3A was joined in orbit by Sentinel-3B (S3B) and during the first few months the satellites operated in tandem. The operation of S3B in tandem with S3A during the early phase provides a unique opportunity to obtain data close in space and time to quantify instrument-related sources of discrepancies. During the tandem phase, S3B flies as close as 30 seconds ahead of S3A, which for most purposes can essentially be considered to be instantaneous. In the case of the Sentinel-3 Surface Topography Mission (STM) altimeter payload, the operation of the altimeter instruments on the two Sentinel satellites in different operating modes (Low Resolution Mode/LRM and Synthetic Aperture Radar Mode/SARM) brings additional benefits by providing the opportunity to directly compare the performance and dependencies of the retrieved measurements in the two operating modes. Evaluation of the inter-satellite consistency incorporates independent data such as in situ data, model output and other satellite data all of which, like the S3 data, include uncertainties. In this study, we present work concerned with the calibration and validation of sea state data from the two Sentinel-3 STM instruments. Using independent data, we examine the geographical distribution and uncertainty characteristics of SWH and wind speed from the Sentinel-3 satellites, as well as any global and regional offsets and discrepancies. Statistical methods are explored to formally quantify the errors of the STM sea state measurements, as well as the dependence of errors in SWH and wind speed on various sea state parameters in LRM and SARM operating modes

    Evaluation and scientific exploitation of CryoSat ocean products for oceanographic studies

    Get PDF
    CryoSat’s ability to operate in different operating modes over water surfaces led to the first in-orbit evidence of the value of SAR-mode altimetry for oceanography, with the mission continuing to provide high-quality data and information not just over ice but also over the open ocean, polar waters and coastal regions. Approaching ten years in orbit, CryoSat routinely delivers a number of oceanographic products for global ocean applications. A dedicated operational CryoSat ocean processor (COP) has existed since April 2014 generating data products available in near real time (FDM/NOP), within ~3 days (IOP) and a geophysical ocean product (GOP) available within a month. An improved processing baseline was introduced in late 2017 and the same processing chain has now been applied to provide consistent ocean data products from the start of the mission. Within the ESA funded CryOcean-QCV project, the National Oceanography Centre (NOC) in the UK is responsible for routine quality control and validation of CryoSat Ocean Products. Activities include the production of daily and monthly reports containing global assessments and quality control of sea surface height anomaly (SSHA), significant wave height (SWH), backscatter coefficient (Sigma0) and wind speed, as well as a suite of validation protocols involving in situ data, model output and data from other satellite altimetry missions. This presentation will review some of the metrics and results obtained for CryoSat Ocean Products for SSHA, SWH and wind speed when assessed against data from tide gauges, wind and wave buoys, WaveWatch III wave model output, HF radar surface current data and comparisons with Jason-2 and Jason-3. Example metrics include SSHA along-track power spectra and the characterisation of offsets and variability regionally and in different sea states. In this presentation, we demonstrate the quality and scientific value of the CryoSat data in the open ocean where the altimeter operates mainly in conventional low-resolution-mode (LRM) but also over selected ocean regions where CryoSat operates in SAR-mode. Finally, scientific exploitation of the CryoSat data for oceanographic studies will be illustrated, focusing on CryoSat sea surface height anomalies. We will present examples of the benefits of CryoSat ocean products for oceanographic studies based on a dedicated Level 3 gridded product, featuring investigations of propagating ocean features (e.g. Rossby-type wave propagation) and their signatures in CryoSat in comparisons with data from other sources including SMOS, Sentinel 3A and 3B

    Improved Retrieval Methods for Sentinel-3 SAR Altimetry over Coastal and Open Ocean and recommendations for implementation: ESA SCOOP Project Results

    No full text
    The European Sentinel-3A satellite, launched by ESA in February 2016, followed by Sentinel-3B in April 2018, as a part of the Copernicus programme, is the second satellite to operate a SAR mode altimeter. SRAL is operated in SAR mode over the whole ocean and promises increased performance w.r.t. conventional altimetry. SCOOP (SAR Altimetry Coastal & Open Ocean Performance) is a project funded under the ESA SEOM (Scientific Exploitation of Operational Missions) Programme Element, to characterise the expected performance of Sentinel-3 SRAL SAR mode altimeter products, and then to develop and evaluate enhancements to the baseline processing scheme in terms of improvements to ocean measurements. Another objective is to develop and evaluate an improved Wet Troposphere correction for Sentinel-3. We present results from the SCOOP project that demonstrate the excellent performance of SRAL at the coast in terms of measurement precision, with noise in Sea Surface Height 20Hz measurements of less than 5cm to within 5km of the coast. We then report the development and testing of new processing approaches designed to improve performance close to the coast, including, for L1B to L2: Application of zero-padding Application of intra-burst Hamming windowing Exact beam forming in the azimuthal direction Restriction of stack processing to within a specified range of look angles. Along-track antenna compensation And for L1B to L2 Application of alternative re-trackers for SAR and RDSAR. Based on the results of this assessment, a second test data set was generated and we present an assessment of the performance of this second Test Data Set generated, and compare it to that of the original Test Data Set. Regarding the WTC for Sentinel-3A, the correction from the on-board MWR has been assessed by means of comparison with independent data sets such as the GPM Microwave Imager (GMI), Jason-2, Jason-3 and Global Navigation Satellite Systems (GNSS) derived WTC at coastal stations. GNSS-derived path Delay Plus (GPD+) corrections have been derived for S3A. Results indicate good overall performance of S3A MWR and GPD+ WTC improvements over MWR-derived WTC, particularly in coastal and polar regions. Based on the outcomes of this study we provide recommendations for improving SAR mode altimeter processing and priorities for future research.Astrodynamics & Space Mission
    corecore