161 research outputs found

    Modeling Multi-Wavelength Stellar Astrometry. II. Determining Absolute Inclinations, Gravity Darkening Coefficients, and Spot Parameters of Single Stars with SIM Lite

    Get PDF
    We present a novel technique to determine the absolute inclination of single stars using multi-wavelength sub-milliarcsecond astrometry. The technique exploits the effect of gravity darkening, which causes a wavelength-dependent astrometric displacement parallel to a star's projected rotation axis. We find this effect is clearly detectable using SIM Lite for various giant stars and rapid rotators, and present detailed models for multiple systems using the REFLUX code. We also explore the multi-wavelength astrometric reflex motion induced by spots on single stars. We find that it should be possible to determine spot size, relative temperature, and some positional information for both giant and nearby main-sequence stars utilizing multi-wavelength SIM Lite data. This data will be extremely useful in stellar and exoplanet astrophysics, as well as supporting the primary SIM Lite mission through proper multi-wavelength calibration of the giant star astrometric reference frame, and reduction of noise introduced by starspots when searching for extrasolar planets.Comment: 8 pages, 7 figures, 4 tables. Accepted for publication in the Astrophysical Journa

    Commercials, careers and culture: travelling salesmen in Britain 1890s-1930s

    Get PDF
    Within the lower middle-class, British commercial travellers established a strong fraternal culture before 1914. This article examines their interwar experiences in terms of income, careers, and associational culture. It demonstrates how internal labour markets operated, identifies the ways in which commercial travellers interpreted their role, and explores their social and political attitudes

    Remodeling of extra-bronchial lung vasculature following allergic airway inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously observed that allergen-exposed mice exhibit remodeling of large bronchial-associated blood vessels. The aim of the study was to examine whether vascular remodeling occurs also in vessels where a spill-over effect of bronchial remodeling molecules is less likely.</p> <p>Methods</p> <p>We used an established mouse model of allergic airway inflammation, where an allergic airway inflammation is triggered by inhalations of OVA. Remodeling of bronchial un-associated vessels was determined histologically by staining for α-smooth muscle actin, procollagen I, Ki67 and von Willebrand-factor. Myofibroblasts were defined as and visualized by double staining for α-smooth muscle actin and procollagen I. For quantification the blood vessels were divided, based on length of basement membrane, into groups; small (≀250 ÎŒm) and mid-sized (250–500 ÎŒm).</p> <p>Results</p> <p>We discovered marked remodeling in solitary small and mid-sized blood vessels. Smooth muscle mass increased significantly as did the number of proliferating smooth muscle and endothelial cells. The changes were similar to those previously seen in large bronchial-associated vessels. Additionally, normally poorly muscularized blood vessels changed phenotype to a more muscularized type and the number of myofibroblasts around the small and mid-sized vessels increased following allergen challenge.</p> <p>Conclusion</p> <p>We demonstrate that allergic airway inflammation in mice is accompanied by remodeling of small and mid-sized pulmonary blood vessels some distance away (at least 150 ÎŒm) from the allergen-exposed bronchi. The present findings suggest the possibility that allergic airway inflammation may cause such vascular remodeling as previously associated with lung inflammatory conditions involving a risk for development of pulmonary hypertension.</p

    Formation of millisecond pulsars with CO white dwarf companions - II. Accretion, spin-up, true ages and comparison to MSPs with He white dwarf companions

    Full text link
    Millisecond pulsars (MSPs) are mainly characterised by their spin periods, B-fields and masses - quantities which are largely affected by previous interactions with a companion star in a binary system. In this paper, we investigate the formation mechanism of MSPs by considering the pulsar recycling process in both intermediate-mass X-ray binaries (IMXBs) and low-mass X-ray binaries (LMXBs). The IMXBs mainly lead to the formation of binary MSPs with a massive carbon-oxygen (CO) or an oxygen-neon-magnesium white dwarf (ONeMg WD) companion, whereas the LMXBs form recycled pulsars with a helium white dwarf (He WD) companion. We discuss the accretion physics leading to the spin-up line in the PPdot-diagram and demonstrate that such a line cannot be uniquely defined. We derive a simple expression for the amount of accreted mass needed for any given pulsar to achieve its equilibrium spin and apply this to explain the observed differences of the spin distributions of recycled pulsars with different types of companions. From numerical calculations we present further evidence for significant loss of rotational energy in accreting X-ray MSPs in LMXBs during the Roche-lobe decoupling phase (Tauris 2012) and demonstrate that the same effect is negligible in IMXBs. We examine the recycling of pulsars with CO WD companions via Case BB Roche-lobe overflow (RLO) of naked helium stars in post common envelope binaries. We find that such pulsars typically accrete of the order 0.002-0.007 M_sun which is just about sufficient to explain their observed spin periods. We introduce isochrones of radio MSPs in the PPdot-diagram to follow their spin evolution and discuss their true ages from comparison with observations. Finally, we apply our results of the spin-up process to the massive pulsar J1614-2230 (Paper I) and put new constraints on the birth masses of a number of recycled pulsars. [Abridged]Comment: MNRAS in press, 32 pages, 14 figures, 4 tables, appendix. Version 2: minor typos correcte

    Age-structured gametocyte allocation links immunity to epidemiology in malaria parasites

    Get PDF
    Background Despite a long history of attempts to model malaria epidemiology, the over-riding conclusion is that a detailed understanding of host-parasite interactions leading to immunity is required. It is still not known what governs the duration of an infection and how within-human parasite dynamics relate to malaria epidemiology. Presentation of the hypothesis Immunity to Plasmodium falciparum develops slowly and requires repeated exposure to the parasite, which thus generates age-structure in the host-parasite interaction. An age-structured degree of immunity would present the parasite with humans of highly variable quality. Evolutionary theory suggests that natural selection will mould adaptive phenotypes that are more precise (less variant) in "high quality" habitats, where lifetime reproductive success is best. Variability in malaria parasite gametocyte density is predicted to be less variable in those age groups who best infect mosquitoes. Thus, the extent to which variation in gametocyte density is a simple parasite phenotype reflecting the complex within-host parasite dynamics is addressed. Testing the hypothesis Gametocyte densities and corresponding infectiousness to mosquitoes from published data sets and studies in both rural and urban Cameroon are analysed. The mean and variation in gametocyte density according to age group are considered and compared with transmission success (proportion of mosquitoes infected). Across a wide range of settings endemic for malaria, the age group that infected most mosquitoes had the least variation in gametocyte density, i.e. there was a significant relationship between the variance rather than the mean gametocyte density and age-specific parasite transmission success. In these settings, the acquisition of immunity over time was evident as a decrease in asexual parasite densities with age. By contrast, in an urban setting, there were no such age-structured relationships either with variation in gametocyte density or asexual parasite density. Implications of the hypothesis Gametocyte production is seemingly predicted by evolutionary theory, insofar as a reproductive phenotype (gametocyte density) is most precisely expressed (i.e. is most invariant) in the most infectious human age group. This human age group would thus be expected to be the habitat most suitable for the parasite. Comprehension of the immuno-epidemiology of malaria, a requisite for any vaccine strategies, remains poor. Immunological characterization of the human population stratified by parasite gametocyte allocation would be a step forward in identifying the salient immunological pathways of what makes a human a good habitat

    Retreatment for hepatitis C virus direct-acting antiviral therapy virological failure in primary and tertiary settings: The REACH-C cohort

    Full text link
    Virological failure occurs in a small proportion of people treated for hepatitis C virus (HCV) with direct-acting antiviral (DAA) therapies. This study assessed retreatment for virological failure in a large real-world cohort. REACH-C is an Australian observational study (n = 10,843) evaluating treatment outcomes of sequential DAA initiations across 33 health services between March 2016 to June 2019. Virological failure retreatment data were collected until October 2020. Of 408 people with virological failure (81% male; median age 53; 38% cirrhosis; 56% genotype 3), 213 (54%) were retreated once; 15 were retreated twice. A range of genotype specific and pangenotypic DAAs were used to retreat virological failure in primary (n = 56) and tertiary (n = 157) settings. Following sofosbuvir/velpatasvir/voxilaprevir availability in 2019, the proportion retreated in primary care increased from 21% to 40% and median time to retreatment initiation declined from 294 to 152 days. Per protocol (PP) sustained virological response (SVR12) was similar for people retreated in primary and tertiary settings (80% vs 81%; p = 1.000). In regression analysis, sofosbuvir/velpatasvir/voxilaprevir (vs. other regimens) significantly decreased likelihood of second virological failure (PP SVR12 88% vs. 77%; adjusted odds ratio [AOR] 0.29; 95%CI 0.11–0.81); cirrhosis increased likelihood (PP SVR12 69% vs. 91%; AOR 4.26; 95%CI 1.64–11.09). Indigenous Australians had lower likelihood of retreatment initiation (AOR 0.36; 95%CI 0.15–0.81). Treatment setting and prescriber type were not associated with retreatment initiation or outcome. Virological failure can be effectively retreated in primary care. Expanded access to simplified retreatment regimens through decentralized models may increase retreatment uptake and reduce HCV-related mortality

    Loci influencing blood pressure identified using a cardiovascular gene-centric array

    Get PDF
    Blood pressure (BP) is a heritable determinant of risk for cardiovascular disease (CVD). To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) and pulse pressure (PP), we genotyped 50 000 single-nucleotide polymorphisms (SNPs) that capture variation in 2100 candidate genes for cardiovascular phenotypes in 61 619 individuals of European ancestry from cohort studies in the USA and Europe. We identified novel associations between rs347591 and SBP (chromosome 3p25.3, in an intron of HRH1) and between rs2169137 and DBP (chromosome1q32.1 in an intron of MDM4) and between rs2014408 and SBP (chromosome 11p15 in an intron of SOX6), previously reported to be associated with MAP. We also confirmed 10 previously known loci associated with SBP, DBP, MAP or PP (ADRB1, ATP2B1, SH2B3/ATXN2, CSK, CYP17A1, FURIN, HFE, LSP1, MTHFR, SOX6) at array-wide significance (P 2.4 10(6)). We then replicated these associations in an independent set of 65 886 individuals of European ancestry. The findings from expression QTL (eQTL) analysis showed associations of SNPs in the MDM4 region with MDM4 expression. We did not find any evidence of association of the two novel SNPs in MDM4 and HRH1 with sequelae of high BP including coronary artery disease (CAD), left ventricular hypertrophy (LVH) or stroke. In summary, we identified two novel loci associated with BP and confirmed multiple previously reported associations. Our findings extend our understanding of genes involved in BP regulation, some of which may eventually provide new targets for therapeutic intervention.</p

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Preparation for a first-in-man lentivirus trial in patients with cystic fibrosis

    Get PDF
    We have recently shown that non-viral gene therapy can stabilise the decline of lung function in patients with cystic fibrosis (CF). However, the effect was modest, and more potent gene transfer agents are still required. Fuson protein (F)/Hemagglutinin/Neuraminidase protein (HN)-pseudotyped lentiviral vectors are more efficient for lung gene transfer than non-viral vectors in preclinical models. In preparation for a first-in-man CF trial using the lentiviral vector, we have undertaken key translational preclinical studies. Regulatory-compliant vectors carrying a range of promoter/enhancer elements were assessed in mice and human air-liquid interface (ALI) cultures to select the lead candidate; cystic fibrosis transmembrane conductance receptor (CFTR) expression and function were assessed in CF models using this lead candidate vector. Toxicity was assessed and 'benchmarked' against the leading non-viral formulation recently used in a Phase IIb clinical trial. Integration site profiles were mapped and transduction efficiency determined to inform clinical trial dose-ranging. The impact of pre-existing and acquired immunity against the vector and vector stability in several clinically relevant delivery devices was assessed. A hybrid promoter hybrid cytosine guanine dinucleotide (CpG)- free CMV enhancer/elongation factor 1 alpha promoter (hCEF) consisting of the elongation factor 1α promoter and the cytomegalovirus enhancer was most efficacious in both murine lungs and human ALI cultures (both at least 2-log orders above background). The efficacy (at least 14% of airway cells transduced), toxicity and integration site profile supports further progression towards clinical trial and pre-existing and acquired immune responses do not interfere with vector efficacy. The lead rSIV.F/HN candidate expresses functional CFTR and the vector retains 90-100% transduction efficiency in clinically relevant delivery devices. The data support the progression of the F/HN-pseudotyped lentiviral vector into a first-in-man CF trial in 2017
    • 

    corecore