168 research outputs found

    Increased incidence of glucose disorders during pregnancy is not explained by pre-pregnancy obesity in London, Canada

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The increasing incidence of impaired glucose tolerance (IGT), gestational diabetes (GDM) and type 2 diabetes (T2D) during pregnancy was hypothesized to be associated with increases in pre-pregnancy body mass index (BMI). The aims were to 1) determine the prevalence of IGT/GDM/T2 D over a 10 year period; 2) examine the relationship between maternal overweight/obesity and IGT/GDM/T2D; and 3) examine the extent to which maternal metabolic complications impact maternal and fetal pregnancy outcomes.</p> <p>Methods</p> <p>Data arose from a perinatal database which contains maternal characteristics and perinatal outcome for all singleton infants born in London, Canada between January 1, 2000 and December 31, 2009. Univariable and multivariable odds ratios (OR) were estimated using logistic regression with IGT/GDM/T2 D being the outcome of interest.</p> <p>Results</p> <p>A total of 36,597 women were included in the analyses. Population incidence of IGT, GDM and T2 D rose from 0.7%, 2.9% and 0.5% in 2000 to 1.2%, 4.2% and 0.9% in 2009. The univariable OR for IGT, GDM and T2 D were 1.65, 1.52 and 2.06, respectively, over the ten year period. After controlling for maternal age, parity and pre-pregnancy BMI the OR did not decrease. Although there was a positive relationship between pre-pregnancy BMI and prevalence of IGT/GDM/T2 D, this did not explain the time trends in the latter. Diagnosis of IGT/GDM/T2 D increased the risk of having an Apgar score <7 at 5 minutes, which was partially explained by gestational hypertension, high placental ratio, gestational age and large for gestational age babies.</p> <p>Conclusions</p> <p>We found a significant increase in the incidence of IGT/GDM/T2 D for the decade between 2000-2009 which was not explained by rising prevalence of maternal overweight/obesity.</p

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    The antibody response to Plasmodium falciparum Merozoite Surface Protein 4: comparative assessment of specificity and growth inhibitory antibody activity to infection-acquired and immunization-induced epitopes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria remains a global public health challenge. It is widely believed that an effective vaccine against malaria will need to incorporate multiple antigens from the various stages of the parasite's complex life cycle. <it>Plasmodium falciparum </it>Merozoite Surface Protein 4 (MSP4) is a vaccine candidate that has been selected for development for inclusion in an asexual stage subunit vaccine against malaria.</p> <p>Methods</p> <p>Nine monoclonal antibodies (Mabs) were produced against <it>Escherichia coli</it>-expressed recombinant MSP4 protein and characterized. These Mabs were used to develop an MSP4-specific competition ELISA to test the binding specificity of antibodies present in sera from naturally <it>P. falciparum</it>-infected individuals from a malaria endemic region of Vietnam. The Mabs were also tested for their capacity to induce <it>P. falciparum </it>growth inhibition <it>in vitro </it>and compared against polyclonal rabbit serum raised against recombinant MSP4</p> <p>Results</p> <p>All Mabs reacted with native parasite protein and collectively recognized at least six epitopes. Four of these Mabs recognize reduction-sensitive epitopes within the epidermal growth factor-like domain found near the C-terminus of MSP4. These sera were shown to contain antibodies capable of inhibiting the binding of the six Mabs indicating infection-acquired responses to the six different epitopes of MSP4. All of the six epitopes were readily recognized by human immune sera. Competition ELISA titres varied from 20 to 640, reflecting heterogeneity in the intensity of the humoral response against the protein among different individuals. The IgG responses during acute and convalescent phases of infection were higher to epitopes in the central region than to other parts of MSP4. Immunization with full length MSP4 in Freund's adjuvant induced rabbit polyclonal antisera able to inhibit parasite growth <it>in vitro </it>in a manner proportionate to the antibody titre. By contrast, polyclonal antisera raised to individual recombinant fragments rMSP4A, rMSP4B, rMSP4C and rMSP4D gave negligible inhibition. Similarly, murine Mabs alone or in combination did not inhibit parasite growth.</p> <p>Conclusions</p> <p>The panel of MSP4-specific Mabs produced were found to recognize six distinct epitopes that are also targeted by human antibodies during natural malaria infection. Antibodies directed to more than three epitope regions spread across MSP4 are likely to be required for <it>P. falciparum </it>growth inhibition <it>in vitro</it>.</p

    Adult Subependymal Neural Precursors, but Not Differentiated Cells, Undergo Rapid Cathodal Migration in the Presence of Direct Current Electric Fields

    Get PDF
    BACKGROUND: The existence of neural stem and progenitor cells (together termed neural precursor cells) in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory agents following injury augments this activation and has been shown to result in behavioural functional recovery following stroke. METHODS AND FINDINGS: With the goal of enhancing neural precursor migration to facilitate the repair process we report that externally applied direct current electric fields induce rapid and directed cathodal migration of pure populations of undifferentiated adult subependyma-derived neural precursors. Using time-lapse imaging microscopy in vitro we performed an extensive single-cell kinematic analysis demonstrating that this galvanotactic phenomenon is a feature of undifferentiated precursors, and not differentiated phenotypes. Moreover, we have shown that the migratory response of the neural precursors is a direct effect of the electric field and not due to chemotactic gradients. We also identified that epidermal growth factor receptor (EGFR) signaling plays a role in the galvanotactic response as blocking EGFR significantly attenuates the migratory behaviour. CONCLUSIONS: These findings suggest direct current electric fields may be implemented in endogenous repair paradigms to promote migration and tissue repair following neurotrauma

    Sirt1 carboxyl-domain is an ATP-repressible domain that is transferrable to other proteins

    Get PDF
    Sirt1 is an NAD(+)-dependent protein deacetylase that regulates many physiological functions, including stress resistance, adipogenesis, cell senescence and energy production. Sirt1 can be activated by energy deprivation, but the mechanism is poorly understood. Here, we report that Sirt1 is negatively regulated by ATP, which binds to the C-terminal domain (CTD) of Sirt1. ATP suppresses Sirt1 activity by impairing the CTD&apos;s ability to bind to the deacetylase domain as well as its ability to function as the substrate recruitment site. ATP, but not NAD(+), causes a conformational shift to a less compact structure. Mutations that prevent ATP binding increase Sirt1&apos;s ability to promote stress resistance and inhibit adipogenesis under high-ATP conditions. Interestingly, the CTD can be attached to other proteins, thereby converting them into energy-regulated proteins. These discoveries provide insight into how extreme energy deprivation can impact Sirt1 activity and underscore the complex nature of Sirt1 structure and regulation

    Maternal oral health status and preterm low birth weight at Muhimbili National Hospital, Tanzania: a case-control study

    Get PDF
    The study examined the relationship between oral health status (periodontal disease and carious pulpal exposure (CPE)) and preterm low-birth-weight (PTLBW) infant deliveries among Tanzanian-African mothers at Muhimbili National Hospital (MNH), Tanzania. A retrospective case-control study was conducted, involving 373 postpartum mothers aged 14-44 years (PTLBW--150 cases) and at term normal-birth-weight (TNBW)--223 controls), using structured questionnaire and full-mouth examination for periodontal and dentition status. The mean number of sites with gingival bleeding was higher in PTLBW than in TNBW (P = 0.026). No significant differences were observed for sites with plaque, calculus, teeth with decay, missing, filling (DMFT) between PTLBW and TNBW. Controlling for known risk factors in all post-partum (n = 373), and primiparaous (n = 206) mothers, no significant differences were found regarding periodontal disease diagnosis threshold (PDT) (four sites or more that had probing periodontal pocket depth 4+mm and gingival bleeding > or = 30% sites), and CPE between cases and controls. Significant risk factors for PTLBW among primi- and multiparous mothers together were age < or = 19 years (adjusted Odds Ratio (aOR) = 2.09, 95% Confidence interval (95% CI): 1.18-3.67, P = 0.011), hypertension (aOR = 2.44, (95% CI): 1.20-4.93, P = 0.013) and being un-married (aOR = 1.59, (95% CI): 1.00-2.53, P = 0.049). For primiparous mothers significant risk factors for PTLBW were age < or = 19 years (aOR = 2.07, 95% CI: 1.13 - 3.81, P = 0.019), and being un-married (aOR = 2.58, 95% CI: 1.42-4.67, P = 0.002). These clinical findings show no evidence for periodontal disease or carious pulpal exposure being significant risk factors in PTLBW infant delivery among Tanzanian-Africans mothers at MNH, except for young age, hypertension, and being unmarried. Further research incorporating periodontal pathogens is recommended

    Cognition based bTBI mechanistic criteria; a tool for preventive and therapeutic innovations

    Get PDF
    Blast-induced traumatic brain injury has been associated with neurodegenerative and neuropsychiatric disorders. To date, although damage due to oxidative stress appears to be important, the specific mechanistic causes of such disorders remain elusive. Here, to determine the mechanical variables governing the tissue damage eventually cascading into cognitive deficits, we performed a study on the mechanics of rat brain under blast conditions. To this end, experiments were carried out to analyse and correlate post-injury oxidative stress distribution with cognitive deficits on a live rat exposed to blast. A computational model of the rat head was developed from imaging data and validated against in vivo brain displacement measurements. The blast event was reconstructed in silico to provide mechanistic thresholds that best correlate with cognitive damage at the regional neuronal tissue level, irrespectively of the shape or size of the brain tissue types. This approach was leveraged on a human head model where the prediction of cognitive deficits was shown to correlate with literature findings. The mechanistic insights from this work were finally used to propose a novel helmet design roadmap and potential avenues for therapeutic innovations against blast traumatic brain injury

    Stable Isotope Tracking of Endangered Sea Turtles: Validation with Satellite Telemetry and δ15N Analysis of Amino Acids

    Get PDF
    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ15N values of bulk skin, with distinct “low δ15N” and “high δ15N” groups. δ15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in light of this species’ imminent risk of extinction in the Pacific
    corecore