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Sirt1 carboxyl-domain is an ATP-repressible
domain that is transferrable to other proteins
Hyeog Kang1, Shinichi Oka2, Duck-Yeon Lee3, Junhong Park4,w, Angel M. Aponte5, Young-Sang Jung6,

Jacob Bitterman1,w, Peiyong Zhai2, Yi He7, Hamed Kooshapur7, Rodolfo Ghirlando8, Nico Tjandra7, Sean B. Lee4,

Myung K. Kim1, Junichi Sadoshima2 & Jay H. Chung1

Sirt1 is an NADþ -dependent protein deacetylase that regulates many physiological functions,

including stress resistance, adipogenesis, cell senescence and energy production. Sirt1 can be

activated by energy deprivation, but the mechanism is poorly understood. Here, we report

that Sirt1 is negatively regulated by ATP, which binds to the C-terminal domain (CTD) of Sirt1.

ATP suppresses Sirt1 activity by impairing the CTD’s ability to bind to the deacetylase domain

as well as its ability to function as the substrate recruitment site. ATP, but not NADþ , causes

a conformational shift to a less compact structure. Mutations that prevent ATP binding

increase Sirt1’s ability to promote stress resistance and inhibit adipogenesis under high-ATP

conditions. Interestingly, the CTD can be attached to other proteins, thereby converting them

into energy-regulated proteins. These discoveries provide insight into how extreme energy

deprivation can impact Sirt1 activity and underscore the complex nature of Sirt1 structure and

regulation.
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S
irtuins are a family of conserved NADþ -dependent
deacetylases that play important regulatory roles in
diverse cellular processes1. Sirtuins deacetylate modified

lysine residues in protein substrates, converting NADþ into
nicotinamide and 20-O-acetyl-ADP-ribose. The founding member
of the Sirtuins is yeast Sir2 (ref. 2), and Sirt1 is the closest
mammalian ortholog3,4. Sirt1 deacetylates a number of substrates,
including NF-kB (refs 5–7), p53 (refs 8–11), p300 (ref. 12),
PGC-1a (refs 13,14) and FOXO15–17 transcription factors
and regulates a wide array of functions ranging from stress
resistance8–11,15,18,19 to adipogenesis20,21.

Sirt1 deacetylase activity can be regulated by interactions
with cellular proteins22–25, the best characterized being DBC1
(Deleted in Breast Cancer 1), which inhibits Sirt1 activity by
binding to the deacetylase (catalytic) domain of Sirt1 (refs 26,27).
The Sirt1-DBC interaction is dynamically regulated. Genotoxic
stress enhances it via ATM-mediated phosphorylation of Sirt1
(ref. 28). Conversely, energy starvation29 and the resulting
activation of the AMP-activated protein kinase (AMPK)
pathway30–32 disrupt it. However, the amount of DBC1 relative
to Sirt1 is low in some cell types29, raising the possibility a
fraction of Sirt1 is not under suppression by DBC1.

The deacetylase (catalytic) domain of Sirt1, which is conserved
in sirtuins, is flanked by the N-terminal domain (NTD)33 and
C-terminal domain (CTD), both of which have regulatory
functions34,35. Sirt1 is unique among sirtuins in that it has
a particularly long CTD (4230 residues), the function of which is
poorly understood. The CTD is largely disordered and/or flexible
and contains a remote 25 residue (residues 641–665 in human
Sirt1 and 631–655 in mouse Sirt1) peptide ESA (Essential for
Sirt1 Activity), which is critical for Sirt1 activity33,34,36,37. ESA is
not only important for Sirt1 substrate interaction34 but also by
looping over, it interacts with and augments the b-sheet of
the Rossman fold in the deacetylase domain33,34,36–38. DBC1
inhibits Sirt1 activity in part by blocking the ESA-deacetylase
domain interaction34.

The mechanism by which energy starvation activates Sirt1
is incompletely understood. ATP is the major energy
currency molecule in cells and can function as an energy
indicator. For example, the ATP-sensitive Kþ channel regulates
electrical excitability in multiple tissues in response to the
intracellular ATP concentration39. Conditions that overwhelm
the homeostatic mechanisms, such as ischaemia or treatment
with 2-deoxy-D-Glucose (2-DG), a non-metabolizable glucose
analogue, can lead to ATP-depletion40. Free cytosolic
concentration of ATP is extremely high under energy-charged
conditions. The intracellular ATP concentration range is
1–10 mM in many cell types and is 5–11 mM in the heart41–43.
With ATP depletion, concentrations of ADP and AMP
transiently increase but remain in the micromolar range:
0–500 mM for ADP and and 0–50 mM for AMP. This is
because serial hydrolysis of ATP-ADP-AMP-adenosine
depletes them over time41–43.

Here, we investigated the possibility that severe energy
depletion activates Sirt1 via ATP. We were led to consider
this possibility when we discovered that severe energy depletion
increases Sirt1 activity despite the decrease of NADþ , which is
dependent on ATP for de novo synthesis, and it occurred
independently of AMPK. In the physiological concentration
range, ATP binds to and represses ESA function and Sirt1
activity, and depletion of ATP increases Sirt1 interaction with
its substrates and its deacetylase activity. Mutations that interfere
with ATP binding increase Sirt1’s ability to resist stress and
inhibit adipogenesis under energy-charged conditions. The CTD
can be attached to unrelated proteins and confer on them the
ability to bind Sirt1 substrates in an energy-sensitive manner.

Results
ATP inhibits Sirt1 activity. To investigate how severe
energy depletion affects Sirt1 activity, we replaced glucose
(25 mM) with 2-DG (25 mM) rather than adding 2-DG to the
glucose-containing media44. Two hours later, we visualized
deacetylation of three Sirt1 substrates, p53 (K382) (Fig. 1a), p65
(NF-kB) (Fig. 1b) and acetyl CoA synthestase1 (ACS1; Fig. 1c)
in cells transiently expressing wild-type (WT) Sirt1 and
catalytically inactive H355Y Sirt1 (HY). For all the experiments
shown in this paper, we used the mouse Sirt1 expression
vector. Treatment with 2-DG increased deacetylation of p53,
p65 and ACS1 in the presence of WT Sirt1, but not in the
presence of HY Sirt1, indicating that Sirt1 is activated by 2-DG.
Under these conditions, levels of ATP decreased dramatically
(Fig. 1d) and levels of NADþ decreased modestly (Fig. 1e and
Supplementary Fig. 1a). To rule out the possibility that 2-DG
increased Sirt1 activity indirectly by activating AMPK30,31, which
is known to be activated by 2-DG (ref. 45), we treated WT
and AMPK-deficient murine embryo fibroblasts (MEFS) with
2-DG (Supplementary Fig. 1b). We found that 2-DG increased
p53 deacetylation even in AMPK-deficient MEFS, indicating
that 2-DG increased Sirt1 activity in an AMPK-independent
manner.

The findings in Fig. 1a–e led us to test the possibility that
Sirt1 activity can be regulated directly by ATP. To investigate
the possible effect of ATP on Sirt1 activity, we performed
catalytic reactions with recombinant Sirt1 using p53 acetylated by
p300 as substrate in the presence of 0–8 mM ATP (with Mg2þ ).
As shown in Fig. 1f, deacetylation of K382 in p53, which
is mediated by Sirt1, is suppressed by ATP, starting from
Z1 mM concentration. Compared to ATP, GTP did not signifi-
cantly inhibit Sirt1 (Supplementary Fig. 1c). Consistent with
this, measurement of Sirt1 initial velocity using [3H]-labelled
histone H4 also showed that ATP decreased Sirt1 activity in
a concentration-dependent manner (Fig. 1g). In contrast,
adenosine, CTP and UTP suppressed Sirt1 activity poorly, if
at all (Fig. 1h). Interestingly, at 1 and 5 mM concentrations,
AMP and ATP showed similar inhibition of Sirt1 activity.
However, AMP and ADP do not reach millimolar concentration
in vivo due to the activities of 50-nucleotidase and adenylate
kinase, respectively (see Fig. 1d and refs 41–43).

Since NADþ has the adenosine moiety in it, ATP may
be inhibiting Sirt1 by simply competing with NADþ . To
examine this possibility, we performed catalytic reactions with
varying concentrations of NADþ and ATP to generate
a Lineweaver–Burk plot (Fig. 1i), which indicated that ATP is a
non-competitive inhibitor against NADþ . To further confirm
that ATP is not a competitive inhibitor of NADþ , we performed
catalytic reactions with yeast Sir2 (ySir2) and Sirt2 (refs 46,47),
which are also NADþ -dependent, in the presence of ATP.
As shown in Fig. 1j, neither ySir2 nor Sirt2 were inhibited
significantly by ATP, indicating that ATP-sensitivity is not
a general property of sirtuins.

ATP binds to the CTD of Sirt1. To better characterize the
Sirt1-ATP interaction, we incubated Sirt1, Sirt2 and bovine serum
albumin (BSA) with 8-azido-[a32P]ATP, an ATP analogue that
crosslinks to ATP-binding proteins when exposed to ultraviolet
radiation48. As shown in Fig. 2a, 8-azido-[a32P]ATP photo-
affinity-labelled Sirt1 but not BSA or Sirt2. We also incubated
recombinant Sirt1, Sirt3 and Sirt6 with ATP-conjugated beads or
empty beads and examined their binding to ATP (Fig. 2b).
Among them, only Sirt1 bound to ATP beads, and competing free
ATP prevented its binding to ATP beads. The Sirt1-ATP
interaction was not diminished even at a very high NaCl

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15560

2 NATURE COMMUNICATIONS | 8:15560 | DOI: 10.1038/ncomms15560 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


concentration (500 mM), indicating that ATP binding is not due
to nonspecific charge interactions (Fig. 2c). To examine whether
ATP-binding affected the electrophoretic mobility of Sirt1, we
photoaffinity-labelled Sirt1 and BSA with 8-azido-ATP and
analysed them by SDS–polyacrylamide gel electrophoresis
(SDS–PAGE; Fig. 2d). The electrophoretic mobility of Sirt1, but
not of BSA, was retarded in a concentration-dependent manner
by 8-azido-ATP-binding. Next, we measured Sirt1’s affinity for
ATP. For this purpose we employed gel-filtration using [32P]ATP.
The ATP-binding curve indicated that Sirt1 had a dissociation
constant (Kd) of B4.6 mM (Fig. 2e), which is close to the
IC50 of 4–5 mM (Fig. 1f) and within the dynamic range of
physiological ATP concentration.

To identify the ATP-binding region in Sirt1, we divided
mouse Sirt1 into two regions: F1 (a.a. 1–490), which contains
the N-terminal domain and the deacetylase domain and F2
(a.a. 491–737), which contains the CTD (Fig. 2f). These
two fragments, along with full-length Sirt1 (FL), were
photoaffinity-labelled with 8-azido-[a32P]ATP and visualized by
autoradiography after separation in SDS–PAGE. We found that
FL and F2 were strongly labelled, but F1 and BSA were not

labelled, indicating that the CTD is the major ATP binding
region.

To narrow down the ATP-binding site, we photoaffinity-
labelled full-length mouse Sirt1 with 8-azido-[a32P]ATP
and digested the complex with trypsin before separating the
mixture in 20% SDS–PAGE. As shown in Fig. 2g, digestion with
trypsin generated many peptide bands, but only the largest
peptide band (B10 kD) was strongly labelled. This band was
excised from the gel and was identified by using LTQ-Orbitrap
MS/MS (Fig. 2h) to be the 85 a.a. fragment (residues 640–724 in
mouse Sirt1) in the CTD (Supplementary Table 1).

A caveat to these experiment is that the recombinant Sirt1
produced in Escherichia coli is likely to have post-translational
modifications that are different from that produced in mammalian
cells and 8-azido-ATP, which is routinely used as an ATP
substitute for ATP-binding studies, may have physicochemical
properties that are different from ATP. Therefore, we tested
whether endogenous cellular Sirt1 could also bind to ATP. For
this purpose, we incubated [a32P]ATP, which can photoaffinity-
label ATP-binding proteins, albeit not as efficiently as
8-azido-[a32P]ATP, with permeabilized HeLa cells and exposed
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Figure 1 | ATP inhibits Sirt1 activity. (a) Treatment with 2-deoxyglucose (2-DG) activates Sirt1. 293 HEK cells were co-transfected with the expression

vectors for p53 and either HY or WT Sirt1 as indicated. Twenty-four hours later, each plate was divided into two plates and further cultured. Forty-eight

hours after transfection, cells were incubated with either 25 mM Glucose (Glu) or 25 mM 2-DG for 2 h. The acetylation status of K382 in p53 was evaluated

by immunoblotting with an antibody specific for acetylated K382. The experiment shown in a was repeated using FLAG-tagged p65 protein (a component

of NF-kB) (b) and FLAG-tagged acetyl CoA synthestase1 (ACS1) (c). The acetylation of p65 and ACS1 were assessed by immunoprecipitation with

FLAG antibody followed by immunoblotting with antibody specific for acetylated K310 for p65 and acetylated lysine antibody for acetylated ACS1.

(d) Cells were treated with media containing either 25 mM Glu or 2-DG for 2 h and the intracellular levels of ATP, ADP and AMP were measured by HPLC.

(e) The intracellular levels of NADþ after Glu or 2-DG treatment were determined by HPLC (n¼4). The HPLC chromatogram is shown in Supplementary

Fig. 1a. (f) ATP inhibits Sirt1 activity. Deacetylation of Ac-p53 by recombinant Sirt1 in the presence of 0–8 mM ATP. Deacetylation in the absence of NADþ

is shown as a negative control. (g) Sirt1 activity against Ac-H4 as a function of ATP (0–10 mM) (n¼4). Results are presented as % of control (0 mM ATP).

(h) Sirt1 activity against Ac-H4 in the presence of either 1 or 5 mM of ATP, AMP, adenosine, CTP and UTP as a percentage of the Sirt1 activity in the

absence of the nucleotides (n¼4). (i) Lineweaver–Burk plot of recombinant Sirt1 activity in the presence of 0 (E), 4 (&), 6 (m) and 8 (� ) mM ATP for

the range of NADþ (n¼ 3). (j) The activities of yeast Sir2 and Sirt2 are relatively resistant to ATP. The relative activities of Sirt1, yeast Sir2 and Sirt2 against

Ac-H4 in the presence of 0 or 5 mM ATP is shown (n¼4).
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them to ultraviolet radiation. Endogenous Sirt1 was then
immunoprecipitated and electrophoresed by using SDS–PAGE
(Fig. 2i). A band co-migrating with Sirt1 was labelled with
[a32P]ATP suggesting that endogenous Sirt1 also bound ATP.

ATP interferes with CTD function. Interestingly, the
ATP-binding peptide partially overlaps with the ESA
(residues 631–655 in mouse Sirt1). Structural studies of adenine
nucleotide-binding proteins indicate that they bind to adenine
nucleotides through hydrogen and ionic bonds involving
numerous polar and charged amino acid residues49. To identify
the residues that are important for ATP binding we mutated
seven polar or positively charged residues in the ESA peptide in
different combinations: Ser 649/651, Tyr 632/640/648, Asn 638

and Arg 639 (Supplementary Fig. 2a). Compared to the WT
ESA peptide, the ESA peptide containing 2A, 3A and 4A
mutations had reduced ATP-binding and the 7A mutation almost
abolished ATP-binding (Supplementary Fig. 2b). The serine
residues mutated in 2A (S649 and S651) are two of the four serine
residues phosphorylated by CK2 in response to ionizing
radiation50. Phosphorylating these two serines (2P, Suppleme-
ntary Fig. 2b) in the ESA peptide also decreased its ATP binding.
To determine if the 7A mutation also affected Sirt1 activity, we
performed catalytic reactions using WT or 7A Sirt1 or DESA
Sirt1, which is missing the ESA region. As shown in
Supplementary Figs 2c and 2d, 7A Sirt1, like DESA Sirt1, had
no catalytic activity in vitro and in vivo, respectively.

Since the 2A mutation disrupts ATP binding with the smallest
number of mutated residues, we focused on the characterization
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of the 2A mutation. In full-length Sirt1, the 2A mutation
significantly reduced Sirt1 binding to ATP beads, although not
completely (Fig. 3a). Consistent with this, the inhibitory effect of
ATP on Sirt1 activity was blunted with the 2A mutation (Fig. 3b).
WT and 2A Sirt1 had similar Km (26.83±2.32 mM and
23.11±0.80 mM, respectively for Ac-H4 and 203.08±13.24 mM
and 186.01±7.07 mM, respectively, for NADþ ) and kcat

(0.43±0.08 min� 1 and 0.41±0.12 min� 1, respectively, for
acetylated-histone H4 (Ac-H4) and 0.40±0.04 min� 1 and
0.54±0.08 min� 1, respectively for NADþ ; Supplementary
Table 2). However, the 2A Sirt1 had higher ATP inhibition
constants Kii (6.45±0.51 versus 4.16±0.16 mM) against Ac-H4
compared to WT Sirt1 (Supplementary Table 3), indicating
that 2A Sirt1 is more resistant to the inhibitory effect of ATP.

ESA interacts with the deacetylase domain and promotes
interaction with Sirt1 substrates34. We hypothesized that
ATP binding to the ESA may inhibit both the Sirt1-substrate
and the ESA-deacetylase domain interactions. To test this
hypothesis, we performed pull-down experiments by incubating
streptavidin-immobilized substrate (biotin-Ac-H4) with
recombinant Sirt1 in the presence of increasing concentrations
of ATP. As shown in Fig. 3c, the amount of Sirt1 bound to the
substrate decreased with increasing ATP concentration. We then
asked if the 2A mutation decreased ATP’s ability to suppress the
Sirt1-substrate interaction. Sirt1 interaction with two substrates,
Ac-p53 (Fig. 3d) and Ac-H4 (Fig. 3e), were tested. For both
substrates, ATP reduced their interaction with WT Sirt1, but
the 2A mutation blunted this effect. We then tested the effect
of ATP on the ESA-deacetylase domain interaction by
performing pull-down assays with the immobilized
biotinylated-ESA peptide after incubating with the deacetylase
domain in the presence of increasing ATP concentration (0–

5 mM). As shown in Fig. 3f, the WT ESA-deacetylase domain
interaction was inhibited by ATP in a concentration-dependent
manner but the 2A mutation blunted this effect. Taken together,
these findings indicate that ATP inhibits Sirt1-substrate and
ESA-deacetylase domain interactions and the 2A mutation blunts
this effect.

ATP binding suppresses Sirt1 activity in vivo. To
study the effect of changing intracellular ATP concentration on
Sirt1-substrate interaction in vivo, we used the catalytically
inactive HY Sirt1 to prevent any alteration in Sirt1-substrate
interaction after deacetylation. HY Sirt1 interaction with p65, as
visualized by co-immunoprecipitation, increased with 2-DG but
2A HY Sirt1 interaction was significantly higher in both glucose
and 2-DG (Fig. 4a). Since HY Sirt1 does not interact with
DBC1 (ref. 51), our findings indicate that ATP depletion increases
Sirt1-p65 interaction in a DBC1-independent manner.

To demonstrate the effect of ATP-binding on Sirt1 activity
in vivo, we restored Sirt1 activity in Sirt1-deficient MEFS
with HY, WT or 2A Sirt1. We next measured Sirt1 activity
by quantifying deacetylation of p65 in these MEFS exposed
to glucose or 2-DG. As shown in Fig. 4b, 2-DG did not
significantly decrease Ac-p65 in cells expressing HY Sirt1, but did
so in cells expressing WT Sirt1. In cells expressing 2A Sirt1, levels
of Ac-p65 were similarly low in either glucose or 2-DG indicating
that 2A Sirt1 has higher activity than WT Sirt1 in energy-charged
condition. Deacetylation of Foxo1, another Sirt1 substrate,
showed a similar energy-dependent pattern (Supplementary
Fig. 2d). Sirt1 increases heat shock response and protects against
heat shock-induced cell death19. We measured cell death in MEFS
24 h after heat shock (42 �C for 30 min) in media containing
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10% fetal bovine serum in the presence of glucose (Fig. 4c).
Consistent with the 2A mutation increasing Sirt1 activity, MEFS
expressing 2A Sirt1 had significantly lower death than
MEFS expressing WT Sirt1. Sirt1 activity is also known to
inhibit adipogenesis20. To further confirm that 2A Sirt1 has
higher activity than WT Sirt1 in a high ATP condition, we
differentiated the MEFS expressing WT Sirt1 and 2A Sirt1 into
adipocytes. Indeed, 2A Sirt1 decreased adipogenesis as shown by
Oil-Red-O staining, which stains lipids (Fig. 4d) and by
expression of adipocyte-specific genes (Fig. 4e). Previously, it
was shown that Sirt1 protects cardiac myocytes against
ischaemia-reperfusion, which causes cell death largely through
the production of oxygen radicals during reperfusion52. To
determine if Sirt1 plays any role in stress resistance to severe
ATP-depletion, we induced cardiac ischaemia without
reperfusion in mice by constricting the left anterior descending
coronary artery, which decreased the cardiac NADþ and ATP
levels in 1 h (Supplementary Fig. 3a). We induced ischaemia in
WT and heart-specific Sirt1 knockout mice and quantified
myocardial infarction (Supplementary Fig. 3b,c). WT hearts had
significantly reduced myocardial infarction (pale discoloration)
than Sirt1 KO hearts, suggesting that Sirt1 is cytoprotective
against the stress induced by ATP depletion.

ATP opens up Sirt1 conformation. The ESA-deacetylation
domain interaction, which loops the CTD, is expected to make
the Sirt1 conformation more compact (Fig. 5a). We hypothesized
that ATP, by blocking the ESA-deacetylase interaction,
and therefore CTD looping, may result in Sirt1 with a more
extended conformation. To confirm this, we determined the
sedimentation coefficient of Sirt1 by analytical ultracentrifuga-
tion. In the absence of any nucleotides, a major species
is observed at 3.79S, consistent with the presence of a Sirt1

monomer. Addition of 10 mM NADþ results in an identical
sedimentation coefficient of 3.79S (Fig. 5b). However, addition
of 10 mM ATP results in a broader peak with lower s values,
indicating that ATP binding leads to a more extended
conformation (Fig. 5c).

Sirt1 CTD confers energy-sensitivity to other proteins.
To clarify the potential role of the ESA/CTD in substrate
interaction, we attached the CTD to an unrelated protein, Clover,
a yellow-green fluorescent protein (Clover-CTD)53. As shown in
Fig. 6a, the interaction of WT Sirt1 and p65 increased with 2-DG,
but DCTD Sirt1, which is missing the CTD, interacted very
poorly with p65 in both glucose and 2-DG. The interaction of
Clover-CTD with p65 increased in 2-DG, whereas Clover alone
did not interact with p65 at all in 2-DG. As shown in Fig. 6b,
Clover-CTD interaction with p53 was also increased with 2-DG.
Deleting ESA from Clover-CTD (Clover-DESA) abolished
interaction with p65 in both glucose and 2-DG (Fig. 6c).
This indicates that the ESA/CTD by itself can interact with a
substrate in an ATP-sensitive manner.

If the CTD can confer substrate-binding to Clover in an
ATP-sensitive manner, it may be able to convert Sirt2, which has
different substrate specificity than Sirt1 and is not ATP-sensitive
(Fig. 1j), into an energy-sensitive deacetylase for Sirt1 substrates.
We transiently expressed Sirt2 or Sirt2-CTD, in which the Sirt1
CTD was fused to the C-terminal end of Sirt2 and visualized its
interaction with p65 (Fig. 6d). Sirt2 did not interact with p65 in
either glucose or 2-DG, but Sirt2-CTD interacted with p65 in
2-DG but poorly in glucose. Consistent with this, deacetylase
activity of Sirt2-CTD, but not Sirt2, increased against Sirt1
substrates p65 (Fig. 6e) and p53 (Fig. 6f) in the presence of 2-DG.
Taken together, these findings indicate ESA/CTD may be able to
confer energy-sensitivity to other proteins.
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Discussion
Our finding that ATP, at physiological concentration
range, inhibits Sirt1 suggests that Sirt1 activity is linked to the
energy-charge state of the cell. The primary site of ATP-binding
is the ESA in the CTD of Sirt1, which is critical for Sirt1 catalytic
activity. The ESA/CTD promotes Sirt1 activity in two ways:
firstly, it loops over and augments the b-sheet of the Rossman
fold in the deacetylase domain (allosteric effect)33–38; secondly, it
increases Sirt1 affinity for its substrates34. ATP appears to
suppress Sirt1 activity by decreasing both of these functions of
ESA/CTD (Figs 4 and 6). Our findings indicate that without ATP,
ESA binds to the deacetylase domain to form an intramolecular
loop, which results in a closed conformation. ATP, which
inhibits the binding of ESA to deacetylase domain, opens up
Sirt1 conformation (Fig. 5). In contrast, NADþ has no effect on
Sirt1 conformation. Mutation of S649 and S651, which decreases
ATP-binding, makes Sirt1 less sensitive to ATP-mediated
inhibition in the energy-charged state (Fig. 4).

Here, we showed that energy deprivation increases the
deacetylation of a number of Sirt1 substrates: p53, p65, ACS1
and Foxo1. However, we do not know whether deacetylation of
all Sirt1 substrates follows such energy dependence. Although we
attempted to examine the deacetylation of autophagy proteins
such as ATG5 and ATG7 (ref. 54) in response to energy
deprivation, the basal acetylation level of these proteins were
too low for us to detect deacetylation in the presence of energy
deprivation.

Since the ESA/CTD cannot increase Sirt1 activity by binding
simultaneously to both the substrate and the catalytic domain
(allosteric activation), we speculate that these interactions
may occur sequentially (Fig. 7). We propose that the ESA/CTD,
by acting as a substrate recruitment site, increases the
local concentration of the substrate. This process is further
complemented by the ESA allosterically activating the catalytic
domain. Our findings suggest that ATP inhibits both of
these steps. However, we do not fully understand the interplay
between substrate recognition and ATP-binding by the
ESA/CTD; addressing this question which will require further
structural studies.

It should be noted that ATP is not a strong Sirt1 inhibitor: at
10 mM, it inhibits Sirt1 activity by B70% (Fig. 1). Furthermore,
due to intracellular buffering capacity, ATP level is generally not
dramatically reduced by modest energy deprivation. This suggests
that Sirt1 is in a partially repressed state in energy-charged
condition and is derepressed in severe energy deprivation
conditions such as ischaemia, thereby increasing stress resistance
and cell survival under these conditions (Supplementary Fig. 3).

Unlike ATP, AMP exists in the micromolar range and is
significantly more sensitive to the energy status of the cell. Thus,
AMPK, which is activated by elevated AMP/ATP ratio, can
increase Sirt1 activity by disrupting the Sirt1-DBC1 interaction
even under modest energy deprivation30–32. We believe that the
inhibitory effect of ATP is AMPK and DBC1-independent for
several reasons: (1) 2-DG activates Sirt1 in AMPK-deficient
MEFS (Supplementary Fig. 1b); (2) substrate interaction of
inactive Sirt1 (HY), which does not bind to DBC1 (ref. 51),
increases with ATP-depletion (Fig. 4a); (3) the CTD confers
energy-sensitivity to Clover and Sirt2 (Fig. 6), which are not
regulated by DBC1 (ref. 26). On the basis of these properties, we
propose that that ATP- and AMPK-mediated regulations make
up two layers of energy-sensitive response of Sirt1, each
responding to different levels of energy-deprivation severity.

Attaching the Sirt1 CTD to Sirt2, which does not have ESA and
is not sensitive to ATP, makes its activity and the ability to bind
protein substrates energy-sensitive (Fig. 6). It can also be attached
to a completely unrelated protein such as Clover, which makes its
interaction with a Sirt1 substrate energy-sensitive. To the best of
our knowledge, this is the first example of energy-sensitive
module that can be transferred to unrelated proteins. It would be
interesting to speculate that the disordered nature of the
CTD makes this possible. On the basis of these findings, we
believe that the CTD is a stand-alone ATP-sensitive substrate
recruitment site.

These observations highlight the complexity of Sirt1 regulation
that had not been fully appreciated previously. Since Sirt1 activity
increases mitochondrial function55–57 and ATP production
(Supplementary Fig. 3d), the inhibitory effect of ATP on Sirt1
activity suggests a negative feedback loop for maintaining energy
homeostasis. Since modest energy deprivation does not
significantly alter intracellular ATP concentration, the role of
ATP in Sirt1 regulation may be reserved for conditions that lead
to severe energy deprivation that require a particularly strong
stress response.

Methods
Plasmids and protein purification. Recombinant WT and 2A Sirt1(mouse), F1
fragment (amino acid residues 1–490 of mouse Sirt1), F2 fragment (amino acid
residues 491–734 of mouse Sirt1) and deacetylase core (amino acid residues
184–510 of mouse Sirt1) were constructed in the pET15b prokaryotic expression
vector by using the Nde1 and Xho1 sites. Prokaryotic expression vectors for human
Sirt2, Sirt3 and Sirt6 were kind gift from Dr John M Denu (University of
Wisconsin). They were expressed in E. coli, and purified on Ni-NTA beads
(Qiagen). All affinity purified proteins were further purified by Superdex 200 HR
10/30 gel-filtration using the AKTA purifier (GE Healthcare). Final preparations of
purified proteins were checked by Coomassie staining of SDS polyacrylamide gels.
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Mammalian expression vectors for human Sirt2 and clover that contain entire
coding region were ligated into the NheI and HindIII sites in pcDNA6/V5-His
(Invitrogen). Sirt2-CTD and Clover-CTD expression vectors were generated by
ligation of the C-terminal region of mouse Sirt1 (amino acid residues 511–734) into
the pcDNA6 Sirt2 and Clover expression vectors by using the HindIII and XhoI
sites. The Clover-DESA expression vector was constructed by sub-cloning the
DESA Sirt1 CTD into the pcDNA6 Clover construct by using the HindIII and XhoI
sites. All constructs were confirmed by DNA sequencing.

Sirt1 deacetylase activity measurements. Biotin-conjugated histone
H4 peptide corresponding to a.a. residues from 2 to 24 was radiolabelled by PCAF

(P300/CBP-associated factor) with [3H]-Acetyl-CoA (MP Biochemicals-ICN,
3.7 Ci/mmole) for 6 h at 30 �C on a rotating platform. To maximize acetylation, an
additional dose of fresh PCAF enzyme and [3H]-Acetyl-CoA were added into
reaction mixture and incubated for additional 4 h. Acetylated peptide was
captured by using streptavidin agarose beads and unbound peptide and free
[3H]-Acetyl-CoA were removed by extensive washing with Tris-buffered saline
buffer. Sirt1- or other Sirtuins-catalysed deacetylation reactions were carried out in
the deacetylase assay buffer (50 mM HEPES at pH 7.0, 1 mM DTT, 10 mM MgCl2,
200 mM NaCl, protease inhibitor cocktail and phosphatase inhibitor cocktail)
containing Streptavidin-bound histone H4 (75,000 c.p.m.), 4 mg enzyme, 0.5 mM
NADþ and the indicated concentrations of ATP in 100 ml reaction volume.
The reaction mixture was incubated at 37 �C on a rotating platform (250 r.p.m.) to
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evenly disperse the beads for 45 min. The reaction was terminated by adding 150 ml
of the quenching solution (87 ml of 37% HCl and 9.5 ml of glacial acetic acid in
2.7 ml of distilled water) to the reaction mixture and then vortexing. After
centrifugation (16,000 g) for 2 min in a microcentrifuge, 100 ml of the supernatant
was collected for scintillation counting to quantify the liberated O-[3H] acetyl-
ADP-ribose. The Sirt1-dependent activity was then calculated by subtracting
the c.p.m. obtained in reactions containing no NADþ . All reactions were carried
out under steady state conditions.

Cell culture, transfection, and reagents. Primary MEFS, and 293 HEK
(ATCC CRL-1573) were grown in DMEM media supplemented with 10% fetal
bovine serum and maintained in a tissue culture incubator containing 5% CO2. To
induce severe energy-depletion, the media was replaced with glucose-free media
containing 25 mM 2-DG for 2–5 h. To acetylate substrate proteins, p300 expression
vector was co-transfected with expression vectors for transient transfection as
indicated in figure legends by using Polyfect reagent (Qiagen) according to the
manufacturer’s protocol. Twenty-four hours later, each plate was divided into two
plates and further cultured. Forty-eight hours post transfection, the cells were
treated as indicated in the figure legends. When transiently expressing p53, we
pretreated transfected cells with MG132 (50 mM, 30 min) to stabilize p53. The
following antibodies and reagents were obtained from commercial sources:
anti-FLAG antibody (F3165, Sigma, dilution 1:1,000), M2-agarose (A2220, Sigma,
dilution 1:40), and V5-agarose (A7345, Sigma, dilution 1:40); anti-V5 antibody
(R960-25, Invitrogen, dilution 1:5,000); anti-p53 antibody (DO-1, sc-126, Santa
Cruz Biotechnology Inc., dilution 1:500), anti-p65/RelA antibody (sc-109, Santa
Cruz Biotechnology Inc., dilution 1:1,000) and acetyl-Foxo1 antibody (D-19,
sc-49437, Santa Cruz Biotechnolgy Inc., dilution 1:500), acetyl-p53 (K382)
antibody (#2525, Cell Signaling Technology, dilution 1:1,000) and acetyl p65
(K310) antibody (D2S3J, #12629, Cell Signaling Technology, dilution 1:1,000);
immobilized g-Amino-hexyl-ATP agarose (Jena Bioscience, dilution 1:40).
Uncropped scans of the most important blots were shown in Supplementary
Figs. 4–8 in the Supplementary Information.

ATP binding measurements using photoaffinity-labelling. Sirt1 and BSA
(2 ug each) were incubated with 0.5 mCi 8-azidoadenosine 50-triphosphate
(Affinity photoprobes, LLC) on ice in the dark for 30 min in a buffer containing
30 mM HEPES, pH 7.0, 200 mM NaCl and 10 mM MgCl2 (Buffer A). After
incubation, the samples were irradiated by using an ultraviolet stratalinker
(Stratagene). During the exposure to ultraviolet radiation, the samples were placed
on ice to prevent overheating. The exposure time for radioactive 8-azidoadenosine
50-triphosphate was 12 s. The ultraviolet-irradiated samples were immediately
added to SDS sample buffer containing b-mercaptoethanol (b-ME), subjected to
SDS–PAGE and visualized by Coomassie staining and autoradiography. For
photoaffinity-labelling in Fig. 2d, which used non-radioactive 8-azidoadenosine
50-triphosphate, the ultraviolet radiation exposure time was increased to 20 min.
For peptide labelling, 8 ml peptide (300 nmole ml� 1) was added to buffer A plus
16mg BSA in a total volume of 50 ml. After 12 s of ultraviolet-irradiation on ice,
30ml of Streptavidin Agarose beads (Thermo scientific) in 0.1% b-ME was
immediately added to samples and incubated on a rotating platform at 4 �C for 2 h.
The incubated samples were loaded into Micro Bio-Spin Chromatography columns
(Bio-Rad) and extensively washed with PBS containing 500 mM NaCl and 1%
Triton X-100. After centrifugation to remove the residual solution, these columns
were counted by using the LS 6500 multi-purpose scintillation counter (Beckman).

Detecting deacetylation of p53 (K328) by immunoblotting. Recombinant
His-tagged WT or mutant Sirt1 (0.4 mg) was incubated with acetylated GST-p53
(0.25 mg) (ref. 50) and 0.5 mM NADþ in deacetylase buffer (50 mM HEPES at
pH 7.0, 1 mM DTT, 10 mM MgCl2, 200 mM NaCl, protease inhibitor cocktail and
phosphatase inhibitor cocktail (Roche)). The reaction mixtures were incubated at
37 �C for the indicated durations and stopped by addition of SDS sample loading
buffer. The loaded amounts of Sirt1 and GST-p53 were visualized with Coomassie
staining, Ponceau S staining or western blotting. Deacetylation of Ac-p53 (K382)
by Sirt1 was detected by immunoblotting with antibody specific for acetylated-p53
(Cell Signaling)

Sirt1 kinetics calculation. The non-competitive model defined by Cleland58 was
used for the data fitting. The data were plotted as reciprocal initial velocity, 1/Vo,
versus reciprocal substrate concentration, 1/[S]. Nonlinear mixed-effects model
fitting function in the programming language R59 (http://www.r-project.org) was
used for data fitting against the double-reciprocal form of the non-competitive
model equation (equation 2), where Vo is initial velocity, Vmax is maximal velocity
of a reaction, Km is Michaelis constant, Kis¼ [E][I]/[EI], Kii¼ [ES][I]/[ESI], [S] is
substrate concentration, [I] is inhibitor concentration, [E] is enzyme concentration,
[EI] is enzyme and inhibitor complex concentration, [ESI] is enzyme and substrate
and inhibitor complex concentration. The catalytic constant, kcat was derived by
fitting to equation (3).

Vo ¼
Vmax½S�

Km 1þ ½I�
Kis

� �
þ ½S� 1þ ½I�

Kii

� � ð1Þ

1
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� �
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1
½S� þ

1þ ½I�
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� �
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ð2Þ
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kcat S½ �ð Þ

km þ S½ �ð Þ ð3Þ

ATP-binding measurements using gel-filtration. For generating the
ATP-binding curve (Fig. 2e), we incubated full-length Sirt1 (2mg) with
100 mCi [g-32P]ATP (300 Ci/mmole, GE Healthcare) and non-radioactive ATP in
assay buffer (30 mM HEPES, pH 7.0, 200 mM NaCl, 10 mM MgCl2, and 2 mM
b-ME) in 20ml final volume. Reaction mixtures were incubated on ice for 30 min
and loaded onto Centri-Sep columns (Princeton separations), which were first
hydrated with PBS. Unbound [g-32P]ATP was removed by centrifugation, and
bound [g-32P ]ATP was measured by counting in a scintillation counter. Total
ATP bound was calculated by the following formula: (bound cpm/input c.p.m.)
� (radioactive ATPþ non-radioactive ATP) for each concentration of ATP. The
concentrations of bound ATP were plotted against the concentrations of input
ATP and fitted to equation 4 using computer programming language R
(http://www.r-project.org). The kd value was determined using the nonlinear least
squares fitting function of the programming language R.

l½ �bound¼ l½ �max

r½ �tot þ r½ �totþ kd
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r½ �tot þ r½ �tot þ kd
� �2 � 4 r½ �tot r½ �tot

q

2 r½ �tot
ð4Þ

where [l]bound is the concentration of bound ligand, [l]max is the concentration of
maximum bound ligand, [r]tot is the total concentration of receptor, [l]tot is the
total concentration of ligand and kd is the equilibrium dissociation constant.

HPLC analysis of adenine nucleotides. A standard mortar and pestle was used to
grind harvested cells or tissues in the presence of liquid nitrogen. Ground powders
were dissolved in 5% perchloric acid and completely sonicated and centrifuged.
The perchloric acid extracts were neutralized to pH 7 with a 3 M KOH and
analysed by a modified ion-pairing high-performance liquid chromatography
(HPLC)60. The Agilent 1,100 HPLC (Agilent technologies) was equipped with
a reverse phase column, Supelco LC-18-T (150� 4.6 mm, 3 mm, Supelco),
the flow rate was 0.7 ml min� 1 and detection was performed at 260 nm. The
HPLC-reverse phase column was calibrated with AMP, ADP, ATP and NADþ

(Sigma-Aldrich).

Transgenic mice. C57BL/6 and 1,29Sv mixed background Sirt1flox/flox mice were
obtained from Jackson Laboratory. Cardiac-specific (a-myosin heavy chain
promoter-driven) Cre transgenic mice with C57BL/6 background, aMHC-Cre,
were obtained from Dr Michael D. Schneider. Cardiac-specific Sirt1 knockout mice
were generated by crossing aMHC-Cre with Sirt1flox/flox mice.

Ischaemia surgery. Male mice (2–7 months old) were anaesthetized by
intraperitoneal injection of pentobarbital sodium (60 mg kg� 1). A rodent
ventilator (model 683; Harvard Apparatus Inc., Holliston, MA, USA) is used with
65% oxygen during the surgical procedure. The animals were kept warm using heat
lamps and heating pads. Rectal temperature was monitored and maintained
between 36.8 and 37.2 �C. The chest was opened by a horizontal incision through
the muscle between the ribs (third intercostal space). Ischaemia was induced by
ligating the anterior descending branch of the left coronary artery (LAD) using an
8–0 nylon suture, with a silicon tubing (1 mm OD) placed on top of the LAD,
2 mm below the border between left atrium and left ventricle (LV). After 24 h of
ischaemia, the animals were anaesthetised and the chest was opened. KCL was
injected at the diastolic phase to arrest the heart. The ascending aorta was
cannulated and perfused with saline to wash out blood. The LAD was occluded
with the same suture. Alcian blue dye (1%) was perfused into the aorta and
coronary arteries. After excision of the hearts, Lversus were sliced into 1-mm-thick
cross-sections. Those sections were incubated with a 1% triphenyltetrazolium
chloride (TTC) solution at 37 �C for 10 min, and then incubated with 10% formalin

ESA

ESA

substrate

substrate
substrate

DEACETYLASE

ATP

ATP

Figure 7 | A schematic diagram of Sirt1 regulation by ATP. The ability of

the ESA/CTD to both recruit substrates (left) and to allosterically activate

the catalytic domain (right) is inhibited by ATP.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15560 ARTICLE

NATURE COMMUNICATIONS | 8:15560 | DOI: 10.1038/ncomms15560 | www.nature.com/naturecommunications 9

http://www.r-project.org
http://www.nature.com/naturecommunications


for 4 h. The infarct area (pale discoloration), the area at risk, and the total LV area
from both sides of each section were measured using ImageJ program, and the
values obtained were averaged. The percentages of area of infarction and AAR of
each section were multiplied by the weight of the section and then totalled from all
sections. AAR/LV and infarct area/AAR were expressed as percentages. All
procedures involved in live animals were performed in accordance with protocols
approved by Rutgers Biomedical Health Science.

We chose our sample sizes based on those commonly used in this field without
predetermination by statistical methods. The age- and weight-matched mice were
randomly divided into each experimental group. The investigators were not
blinded to the group allocation during experiments and outcome assessment.

Generation of WT and mutant Sirt1 stable cell lines. To generate a lentiviral
vector for Sirt1, full-length cDNAs of WT, HY and 2A mutant Sirt1 in
pcDNA6/V5-His plasmids were digested with Nhe1 and Pme1 and cloned into
Nhe1 and Swa1 sites of pCDH-GFP-Puro lentivirus vector (SBI). Lentivirus
production and transduction into Sirt1 KO cells to make stably expressing cell
lines were performed according to the instruction of the Virapower Lentiviral
Expression system (Invitrogen).

Adipogenesis. WT and 2A mutant Sirt1 cell lines were cultured in DMEM
supplemented with 10% fetal bovine serum. Adipoyte differentiation was induced
by treating confluent cells in differentiation media supplemented with insulin
(Sigma) and triiodothyronine (T3, Sigma), followed by a 2-day incubation with
induction media supplemented with insulin, triiodothyronine, indomethacin,
dexamethasone and IBMX. Two days after induction, cells were cultured in
differentiation media for 6 days. For Oil Red O staining, cells were fixed with 4%
formalin and stained for 1 h with 0.5% Oil Red O solution in 70% isopropyl
alcohol. Gene expression analysis was performed by SYBR Green PCR. Briefly, total
RNA was isolated mini kit (Qiagen) and quantified by NanoDrop (NanoDrop
Technology). cDNAs were synthesized using SuperScript cDNA synthesis
kit (Invitrogen) and analysed by real-time PCR with SYBR Green method
(Applied Biosystem). The relative quantity of each transcript was calculated by
comparative Ct method normalized against Gapdh. The primers of target genes
were purchased from MWG Operon and the sequences of primers were shown in
Supplementary Table 4.

Sedimentation velocity analytical ultracentrifugation. Sedimentation velocity
experiments were conducted at 50,000 r.p.m. and 20 �C using a An50-Ti rotor
on a Beckman Coulter ProteomeLab XL-I analytical ultracentrifuge following
standard protocols61. Briefly, 10 mM samples of recombinant full-length Sirt1 in
150 mM NaCl, 40 mM Tris (pH 7.4), 20 mM MgCl2 and 0.5 mM TCEP was
prepared. Sirt1 protein samples were also prepared at similar concentrations from
the same stock solutions in 10 mM ATP or 10 mM NAD, by dilution of 100 mM
ATP and 50 mM NAD-buffered stock solutions. All samples were loaded in two-
channel centre-piece cells and analysed in the same sedimentation experiment with
data collected using the Rayleigh interference (655 nm) optical detection system.
Absorbance (280 nm) data were also collected for samples without ATP or NAD.
Sedimentation data were time-corrected62 and analysed in SEDFIT 15.01c (ref. 63)
in terms of a continuous c(s) distribution of Lamm equation solutions with a
resolution of 0.05 S and a maximum entropy regularization confidence level of 0.68.
Excellent data fits were observed with r.m.s.d. values ranging from 0.0041 to 0.0048
absorbance units and 0.0043 to 0.0071 fringes. All solution densities r and
viscosities Z were measured experimentally at 20 �C on an Anton Paar DMA 5000
density meter and Anton Paar AMVn automated rolling ball viscometer,
respectively. Protein partial specific volumes were calculated based on the amino
acid composition in SEDNTERP64 (http://sednterp.unh.edu/), and sedimentation
coefficients s were corrected to s20,w values at standard conditions.

In vivo labelling of Sirt1 protein. Cells in the exponential phase of growth
were harvested by treatment of trypsin and permeabilized to exogenously supplied
[a-32P] ATP as described previously65 with some modifications. Cells were washed
with PBS and treated on ice for 10 min with a hypotonic buffer (10 mM Tris-HCl
(pH 7.8), 1 mM EDTA, 4 mM MgCl2, and 30 mM b-mercaptoethanol). The cells
were centrifuged (3,000 g for 10 min) and resuspended in the same buffer (107 cells
per ml). These cells were added to a reaction mixture containing 33 mM Tris-HCl
(pH 7.8), 20 mM b-ME, 0.6 mM EDTA, 42.5 mM MgCl2, 250 mCi of [a-32P] ATP
(3,000 Ci/mmole, GE), 0.05% Triton X-100. After incubation for 1 h on ice, cells
were collected and washed twice with cold PBS by centrifugation. The collected
cells were lysed by using buffer containing PBS, 1% Triton X-100, protease
inhibitor cocktail, and phosphatase inhibitor cocktail (Roche). After centrifugation
(13,000 r.p.m. for 30 min at 4 �C), the supernatant was ultraviolet-irradiated on ice
for 10 min and immunoprecipitated with Sirt1 antibody or where indicated, with
Flag antibody-agarose (Sigma) beads. ATP bound Sirt1 protein was visualized by
autoradiography and by immunoblotting.

Statistics. Results are expressed as the mean±s.e.m. Comparisons between the
treatment groups were analysed by two-tailed unpaired Student’s t-test using

GraphPad Prism 5 software (GraphPad Software). Differences were considered
significant when Po0.05.

Data availability. The authors declare that all the other data supporting the
findings of this study are available within the article or Supplementary Information
files. All other relevant data are available from the corresponding author upon
request.
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