1,049 research outputs found

    Does the spacecraft trajectory strongly affect the detection of magnetic clouds?

    Get PDF
    Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) where a magnetic flux rope is detected. Is the difference between MCs and ICMEs without detected flux rope intrinsic or rather due to an observational bias? As the spacecraft has no relationship with the MC trajectory, the frequency distribution of MCs versus the spacecraft distance to the MCs axis is expected to be approximately flat. However, Lepping and Wu (2010) confirmed that it is a strongly decreasing function of the estimated impact parameter. Is a flux rope more frequently undetected for larger impact parameter? In order to answer the questions above, we explore the parameter space of flux rope models, especially the aspect ratio, boundary shape, and current distribution. The proposed models are analyzed as MCs by fitting a circular linear force-free field to the magnetic field computed along simulated crossings. We find that the distribution of the twist within the flux rope, the non-detection due to too low field rotation angle or magnitude are only weakly affecting the expected frequency distribution of MCs versus impact parameter. However, the estimated impact parameter is increasingly biased to lower values as the flux-rope cross section is more elongated orthogonally to the crossing trajectory. The observed distribution of MCs is a natural consequence of a flux-rope cross section flattened in average by a factor 2 to 3 depending on the magnetic twist profile. However, the faster MCs at 1 AU, with V>550 km/s, present an almost uniform distribution of MCs vs. impact parameter, which is consistent with round shaped flux ropes, in contrast with the slower ones. We conclude that either most of the non-MC ICMEs are encountered outside their flux rope or near the leg region, or they do not contain any

    Transfer reactions in the sudden limit of the pairing-rotor model

    Get PDF
    The transfer of multiple pairs of particles in heavy-ion reactions is studied in the sudden limit of the macroscopic pairing-rotor model

    Characterization of the Turbulent Magnetic Integral Length in the Solar Wind: From 0.3 to 5 Astronomical Units

    Get PDF
    The solar wind is a structured and complex system, in which the fields vary strongly over a wide range of spatial and temporal scales. As an example, the turbulent activity in the wind affects the evolution in the heliosphere of the integral turbulent scale or correlation length [{\lambda}], usually associated with the breakpoint in the turbulent-energy spectrum that separates the inertial range from the injection range. This large variability of the fields demands a statistical description of the solar wind. In this work, we study the probability distribution function (PDF) of the magnetic autocorrelation lengths observed in the solar wind at different distances from the Sun. We use observations from Helios, ACE, and Ulysses spacecraft. We distinguish between the usual solar wind and one of its transient components (Interplanetary Coronal Mass Ejections, ICMEs), and study also solar wind samples with low and high proton beta [\beta_p ]. We find that in the last 3 regimes the PDF of {\lambda} is a log-normal function, consistent with the multiplicative and non-linear processes that take place in the solar wind, the initial {\lambda} (before the Alfv\'enic point) being larger in ICMEs

    Role of break-up processes in fusion enhancement of drip-line nuclei at energies below the Coulomb barrier

    Get PDF
    We carry out realistic coupled-channels calculations for 11^{11}Be + 208^{208}Pb reaction in order to discuss the effects of break-up of the projectile nucleus on sub-barrier fusion. We discretize in energy the particle continuum states, which are associated with the break-up process, and construct the coupling form factors to these states on a microscopic basis. The incoming boundary condition is employed in solving coupled-channels equations, which enables us to define the flux for complete fusion inside the Coulomb barrier. It is shown that complete fusion cross sections are significantly enhanced due to the couplings to the continuum states compared with the no coupling case at energies below the Coulomb barrier, while they are hindered at above barrier energies.Comment: RevTex, 3 pages, 5 figure

    Superposed epoch study of ICME sub-structures near Earth and their effects on galactic cosmic rays

    Full text link
    Interplanetary coronal mass ejections (ICMEs) are the interplanetary manifestations of solar eruptions. The overtaken solar wind forms a sheath of compressed plasma at the front of ICMEs. Magnetic clouds (MCs) are a subset of ICMEs with specific properties (e.g. the presence of a flux rope). When ICMEs pass near Earth, ground observations indicate that the flux of galactic cosmic rays (GCRs) decreases. The main aims of this paper are to find: common plasma and magnetic properties of different ICME sub-structures, and which ICME properties affect the flux of GCRs near Earth. We use a superposed epoch method applied to a large set of ICMEs observed \insitu\ by the spacecraft ACE, between 1998 and 2006. We also apply a superposed epoch analysis on GCRs time series observed with the McMurdo neutron monitors. We find that slow MCs at 1 AU have on average more massive sheaths. We conclude that it is because they are more effectively slowed down by drag during their travel from the Sun. Slow MCs also have a more symmetric magnetic field and sheaths expanding similarly as their following MC, while in contrast, fast MCs have an asymmetric magnetic profile and a compressing sheath in compression. In all types of MCs, we find that the proton density and the temperature, as well as the magnetic fluctuations can diffuse within the front of the MC due to 3D reconnection. Finally, we derive a quantitative model which describes the decrease of cosmic rays as a function of the amount of magnetic fluctuations and field strength. The obtained typical profiles of sheath/MC/GCR properties corresponding to slow, mid, and fast ICMEs, can be used for forecasting/modelling these events, and to better understand the transport of energetic particles in ICMEs. They are also useful for improving future operative space weather activities.Comment: 13 pages, 6 figures, paper accepted in A&

    Expansion of magnetic clouds in the outer heliosphere

    Get PDF
    A large amount of magnetized plasma is frequently ejected from the Sun as coronal mass ejections (CMEs). Some of these ejections are detected in the solar wind as magnetic clouds (MCs) that have flux rope signatures. Magnetic clouds are structures that typically expand in the inner heliosphere. We derive the expansion properties of MCs in the outer heliosphere from one to five astronomical units to compare them with those in the inner heliosphere. We analyze MCs observed by the Ulysses spacecraft using insitu magnetic field and plasma measurements. The MC boundaries are defined in the MC frame after defining the MC axis with a minimum variance method applied only to the flux rope structure. As in the inner heliosphere, a large fraction of the velocity profile within MCs is close to a linear function of time. This is indicative of} a self-similar expansion and a MC size that locally follows a power-law of the solar distance with an exponent called zeta. We derive the value of zeta from the insitu velocity data. We analyze separately the non-perturbed MCs (cases showing a linear velocity profile almost for the full event), and perturbed MCs (cases showing a strongly distorted velocity profile). We find that non-perturbed MCs expand with a similar non-dimensional expansion rate (zeta=1.05+-0.34), i.e. slightly faster than at the solar distance and in the inner heliosphere (zeta=0.91+-0.23). The subset of perturbed MCs expands, as in the inner heliosphere, at a significantly lower rate and with a larger dispersion (zeta=0.28+-0.52) as expected from the temporal evolution found in numerical simulations. This local measure of the expansion also agrees with the distribution with distance of MC size,mean magnetic field, and plasma parameters. The MCs interacting with a strong field region, e.g. another MC, have the most variable expansion rate (ranging from compression to over-expansion)

    Progressive transformation of a flux rope to an ICME

    Full text link
    The solar wind conditions at one astronomical unit (AU) can be strongly disturbed by the interplanetary coronal mass ejections (ICMEs). A subset, called magnetic clouds (MCs), is formed by twisted flux ropes that transport an important amount of magnetic flux and helicity which is released in CMEs. At 1 AU from the Sun, the magnetic structure of MCs is generally modeled neglecting their expansion during the spacecraft crossing. However, in some cases, MCs present a significant expansion. We present here an analysis of the huge and significantly expanding MC observed by the Wind spacecraft during 9 and 10 November, 2004. After determining an approximated orientation for the flux rope using the minimum variance method, we precise the orientation of the cloud axis relating its front and rear magnetic discontinuities using a direct method. This method takes into account the conservation of the azimuthal magnetic flux between the in- and out-bound branches, and is valid for a finite impact parameter (i.e., not necessarily a small distance between the spacecraft trajectory and the cloud axis). Moreover, using the direct method, we find that the ICME is formed by a flux rope (MC) followed by an extended coherent magnetic region. These observations are interpreted considering the existence of a previous larger flux rope, which partially reconnected with its environment in the front. These findings imply that the ejected flux rope is progressively peeled by reconnection and transformed to the observed ICME (with a remnant flux rope in the front part).Comment: Solar Physics (in press

    Spinodal Instabilities in Nuclear Matter in a Stochastic Relativistic Mean-Field Approach

    Get PDF
    Spinodal instabilities and early growth of baryon density fluctuations in symmetric nuclear matter are investigated in the basis of stochastic extension of relativistic mean-field approach in the semi-classical approximation. Calculations are compared with the results of non-relativistic calculations based on Skyrme-type effective interactions under similar conditions. A qualitative difference appears in the unstable response of the system: the system exhibits most unstable behavior at higher baryon densities around ρb=0.4 ρ0\rho_{b}=0.4 ~\rho_{0} in the relativistic approach while most unstable behavior occurs at lower baryon densities around ρb=0.2 ρ0\rho_{b}=0.2 ~\rho_{0} in the non-relativistic calculationsComment: 18 pages, 7 figure

    Interplanetary Magnetic Field Guiding Relativistic Particles

    Get PDF
    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth

    The role of alpha particles in the emission of plasma waves inside solar ejecta

    Get PDF
    The enhancement of the resonant instability of right-hand polarized electromagnetic ion cyclotron waves by alpha particles for physical parameters corresponding to coronal mass ejections is studied. We focus on the effects of alpha thermal anisotropy and relative He++/H+ abundance on growth and absorption rates. The first parameter governs directly wave emission, while the second modifies also the wave speed and indirectly enhances the wave excitation
    • 

    corecore