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Abstract: The transfer of multiple pairs of particles in heavy-ion reactions is studied in the sudden limit 

of the macroscopic pairing-rotor model. 

1. Introduction 

The possibility that one might be able to observe nuclear reactions in which 

correlated groups of particles are transferred between the projectile and target has 

always been an intriguing topic in the field of heavy-ion physics. A novel approach 

to this subject has been proposed recently wherein the formal analogy between 

surface and pairing vibrations is exploited to introduce a macroscopic model for 

the excitation of pair-transfer modes ‘). For normal systems in the vicinity of closed 

shells the deformations considered have a dynamical character. In the case of 

superfluid nuclei ‘), on the other hand, the residual interactions are strong enough 

to generate static deformations in gauge space. The isotropy of the abstract space 

is thus broken, and one thinks of a system with a symmetry axis oriented along a 

given angle rp. The finite spread in the number of particles characteristic of the 

superfluid phase is taken into account by allowing the mass content of the nucleus 

to change, depending on the point of view from which the system is observed in 

gauge space. This ansatz can also be interpreted in terms of an effective modulation 

of the nuclear radius for different orientations in the abstract space. From this 

premise one can proceed to analyze multi-pair transfer reactions in much the same 

way as it is done for the inelastic excitation of a rotational band ‘). 

Recent studies explore the consequences of the macroscopic pairing-rotor model 

using classical, semi-classical and quantum mechanical methods 4-7). The present 
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work investigates the sudden limit of the quantum mechanical formulation, wherein 
the gauge angle cp is treated as a frozen variable. This limit provides a useful physical 
insight into the fully numerical quantum mechanical calculation. It also automati- 
cally incorporates quantum effects that are either absent or difficult to include in 
the classical and semi-classical approaches. Finally, the semi-classical limit of the 
sudden approximation directly reveals the classical structure of the problem in terms 
of simple formulas. 

The next section presents the sudden limit of the macroscopic model for pair- 
transfer reactions with superfluid systems. An application is made in sect. 3 to a 
case of multiple-pair transfer in a Ca + Sn collision. The semi-cIassica1 limit is derived 
in sect. 4 and the analytic results are compared to classical and quantum mechanical 
calculations. The results of this work are summarized in sect. 5. 

2. Formulation 

Consider a collision of a projectile of charge Z,e and mass A, with a superfluid 
target nucleus (&e, AZ). In the macroscopic point of view the projectile only plays 
the role of an external source which can add pairs of particles to (or remove them 
from) the target. The aforementioned dependence of the nuclear radius on the 
o~entation in gauge space is parametrized in the intrinsic frame as follows 2>, 

R,(cp,)=R* I+~cos2ip, 

[ 

) 

2 1 (1) 

where &, is the pairing deformation parameter and (pF is a gauge angle measured 
with respect to the symmetry axis of the sytem. 

The characterization of the deformed superfluid system according to eq. (1) makes 
it possible to consider a dynamical problem in which coordinates in the ordinary 
space and those of the pairing rotor are connected. This link can be established 
because changes in the orientation of the symmetry axis in gauge space (specified 
by the coordinate p) have effects on the relative motion. Indeed, the short-ranged 
nuclear interaction V,, expressed as a function of the distance between the nucfear 
surfaces, will appear relatively weaker or stronger as the different nuclear sizes in 
the intrinsic state are sampled. A hamiltonian for this problem can then be written 
as 

2 Z,Z2e2 H-$+g+ ----+ Vi4r-- Rt - R2(9)), f (2) 

where /.L is the reduced mass and I is the position of the projectile with respect to 
the target*. The second term in the previous expression represents the intrinsic 

l The formulation of the problem for the transfer of an integer number of particles is invariant with 

respect to the interval [a, 61 in which gauge angles are defined as long as (b-a) = 27r. In eq. (2) we 

have selected the interval in such a way that the symmetry axis of the rotor and the direction from which 

angles are measured coincide for cp = 0. 
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hamiltonian for the pairing-rotor. Its eigenstates are 

n =o, +1, *2,. . . 

so that 

327 

(3) 

(4) 

The integer n counts the number of pairs which are added to (n > 0) or removed 

from (n < 0) the initial system (n = 0). In practice, the inertial parameter I may be 

obtained by fitting the quadratic part of the pair separation energies “). 

The approach of the present work is to ignore the energy differences due to the 

different number of pairs. That is, we take the limit I + ~0. The resulting hamiltonian 

I?(v) then depends only parametrically on the gauge angle. This is analogous to 

treating the Coulomb excitation of an ordinary rotor in the sudden limit, where the 

orientation of the rotor is kept frozen during the collision 9-11). Two differences are 

noteworthy, however. In the present case, where the interaction is spherically 

symmetric, the transfer of particles does not involve transfer of angular momentum. 

Secondly, although the energy differences implied by eq. (4) are typically larger 

than those of an ordinary rotor, the collision time determined by the nuclear 

interaction is much shorter than for Coulomb excitation (see e.g. ref. ‘I)). Thus it 

is reasonable to apply the sudden limit to the transfer problem. 

Consider then the Schrodinger equation 

m+m(~, cp)=O, (5) 

where E is the energy in the center-of-mass frame. Solving this equation under the 

usual scattering boundary condition (ignoring the nuclear charges for a moment 

and introducing the wave number k through h2k2 = 2@), 

x(r, cp)+eik’+f(8, cp): (6) 

generates an elastic scattering amplitude f as a function of the scattering angle 6 

and the gauge angle cp. The amplitude fn for transferring n pairs is then given by 

the matrix element off between the initial and final intrinsic states 

I 
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J 
27r 

h(G)= Vzf(it,q)!Podcp=& eC""'f(8,cp)drp. (7) 
0 0 

The corresponding cross section is given by k”l’. 

To implement this procedure one must expand the total wave function into partial 

waves. The radial wave equation to be solved for partial wave number 1 is 

1 Z,Z2e2 

+ r 
----+VN(r-R,-R2(cp)) (8) 
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with the asymptotic condition 

u,(r, cp) + W’(r) - S,(cp)Hl+)(r) . (9) 

Here H (*) denote the asymp totic outgoing and ingoing Coulomb partial waves 

Hj”(r)=exp[*i(kr-nIn(2kr)-fln+m,)], (IO) 

where n = Z,Z,e2,u/hk and cr[ is the Coulomb phase shift which satisfies the 
recursion relation 

a8 =arctan (n/1)+~~-~. (11) 

In this way the nuclear partial wave elastic-matrix S, is generated as a function of 
40 and the transfer partial wave matrix elements S,, are obtained by 

S,, = & J 
2% 

eeiznQ S,( 4p) dy, = 2 
rr/z cos 2n(p S,( cp) d@. 

0 77 J 0 

The last equality follows from the symmetry R2(p +frr) = R,(rp -4~). It 
explicitly that the amplitudes for pair addition and removal are identical 
present model and that the range of 40 can actually be restricted to 90” 
calculations. Finally, the total pair transfer amplitudes are constructed as 

_L(6) =& ,zo(Zlf 1) 1% ei2rrl - ~n,olS(cos 6) . 

(12) 

shows 
in the 
in the 

(13) 

3. Application 

As an application of this approach, we have considered the collision 40Ca+ “%n 
with energies at the Coulomb barrier ( V, = 120 MeV) and also well below the barrier. 
The nuclear interaction is parametrized as 

v&f= 
Vo+ iW 

1 +el(r-R,-R,tvP)ii4 - 

The strength parameters were chosen as V, = -71 MeV and W = -17 MeV. The radii 
are given by Ri = 1.21 Aj’3 fm and the diffuseness is a = 0.63 fm. For the calculations 
shown in fig. 1 we have taken the parameter &, = 5. The numerical calculations of 
Sl(q) were done with the PTOLEMY program ‘2). 

The resulting cross sections in fig. la are obtained at the center-of-mass energy 
E = 120 MeV, while those in fig. lb are for E = 105 MeV. For the higher energy the 
cross sections peak around 6 = 120” with about 1 mb/sr for the one pair transfer. 
An interesting detail may be seen in the different behavior of the forward-angle 
cross sections for n = 1 and n = 2 in fig. la. This reflects the fact that there is an 
interference between the direct transfer of 4 particles and the successive transfer 
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Fig.1. Angufar distributions for the transfer of one in = 1) and twa in = 2) pairs in the reaction 40Ca+ i’aSn 

calculated in the sudden limit of the macrascapic ~~jri~g-ratar model. The crass sections in parts (a) 

and (b) correspond to center-of-mass energies E = 125 MeV and E = 155 MeY, respectively. The deforma- 
tion parameter is 0, = 5. 
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Fig. 2. Probabilities P,, for the transfer of n pairs in the reaction 40Ca -t “% at a center-of-mass energy 

E = 120 MeV, constructed from the values of the S-matrix element far the near-grazing partiat wave 

I = 40. The probabilities were computed far different absorption strengths, as measured by the parameter 

W in ea. (14) (solid line). The extrapaiated values far W +5 are compared with the probabilities quoted 

in ref. “) far the same reactian (circles). The deformation parameter is & = 18. 



330 S. Lundowne et al. / Transfer reacrions 

of 2 particles in the it = 2 amplitude. All such direct and indirect processes are 

automatically included in the sudden limit approach. Within the macroscopic model, 

the effective range of the sequential pair transfer is shorter than that of the direct 

four-particle transfer and thus the latter predominates at very low energies ‘*‘). This 

is borne out by the low-energy cross sections shown in fig. lb where it is seen that 

the n = 1 and the n = 2 distributions now have the same shape. They are both given 

by direct excitation mechanisms at this low energy. 

The classical and semi-classical probability calculations of ref. “) were done for 

the same case considered in fig. la but with a larger value of /3,, = 18, no absorptive 

potential and for one impact parameter corresponding to the grazing partial wave 

I= 40. In order to compare to these results we repeated the sudden limit calculations 

with the larger p,, and made an extrapolation to the no absorption limit. This is 

illustrated in fig. 2 where the solid curves show the values of [&,I* for I=40 and 

different values of the absorption strength parameter W. The dashed-lines show the 

extrapolation to W = 0, assuming an exponential behavior. The circles at W = 0 are 

the probabilities calculated in ref. “). 

4. Semi-classical limit 

It is instructive to study the semi-classical limit of the formalism presented above. 

The partial wave S-matrix S,(p) is given in terms of the nuclear phase shift 6,(q) as 

S,( cp) -r eizslCc) . (1% 

The simplest semi-classical approximation gives the phase shift in terms of an 

integral of the nuclear potential along the trajectory corresponding to the partial 

wave 1; namely, 

26,((p) = -; VN(r(f), P) dt. (16) 

This expression is valid for low energies or high partial waves such that only the 

tail of the nuclear interaction is probed. Making use of the exponential decay of 

V, and expanding r(t) about the turning point r, one obtains 

1 27ra 
2&(q) = -x 

J 
T V,(r*, 50) = +%(r*, P) , (17) 

where Y0 is the radial acceleration at the turning point and 7 is the effective collision 

time. Furthermore, since the cp dependence enters only in the nuclear radius we 

may write 

26,((p) = -I V~)(~~} e 
2P COS 2rp = 26’0’ eza COS 29 

I f (1% 
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where V(No) is the undeformed potential (& = 0), 8;” is the corresponding phase 

shift and 

Thus the transfer S-matrix elements are given by the integral 

I 
2m 

e-i2w exp [i2$” e2a ‘OS “‘1 dp, 
0 

(19) 

The classical underpinning of the transfer amplitudes can be seen by evaluating 

the integral above using the method of steepest descent. Consider the stationary 

phase condition 

n = _2ajO’ ,2a cos2rp 2a sin2p=A(cp). (21) 

The right-hand side defines the classical number of transferred pairs as a function 

of the orientation angle in gauge space. This expression is the analogue of the 

relation between the final transferred spin and the initial orientation angle for the 

Coulomb excitation of a quadrupole deformed object “). To leading order in (Y eq. 

(21) reduces to the result for iI given in ref. i3). 

The number of transferred pairs A(cp) calculated in ref. “) by integrating the 

classical equations of motion for the hamiltonian of eq. (2) is shown by the solid 

curve in fig. 3a. The case is the same as the one mentioned above in connection 

with fig. 2. The corresponding dashed curve is obtained from eq. (21), using eqs. 

(17), (18) with the same parameters as in ref.4). The overall agreement with the 

dynamical calculations is quite good. The discrepancy around the maximum indi- 

cates that the orbits corresponding to the maximum transfer, which feel the nuclear 

force more strongly, are distorted at the distance of closest approach. To check this, 

the classical calculations were repeated for a larger impact parameter corresponding 

to I = 50 14). The results in this case are in better agreement with the sudden limit, 

as shown in fig. 3b. 

One can continue to use the steepest descent method and demonstrate the 

interference effects due to the two roots of eq. (21) for classically allowed values 

of n and the decay ofthe amplitudes for the classically forbidden ones. The maximum 

value of W(cp) is reached when 

2ff cos24c,=2(Jl+a2-1)=X* (22) 

and has the value 

fi(cp,)= -2S~“‘e”,~~Jx,. (23) 

It should be noted that typical physical values of 2Sj”‘, under the conditions that 

the semi-classical limit in eq. (20) is valid, have magnitudes of the order of unity 

or less. In addition, the value of (Y should be constrained so that the variation in 
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Fig. 3. The function ii(cp) calculated for the reaction 40Ca+ “%I at a center-of-mass energy E = 120 MeV. 

The plots in (a) and (b) correspond to the partial waves i = 40 and t = 50, respectively. The full-drawn 

curves were obtained 14) from classical trajectory calculations, as in ref. 4). The dashed curves show the 

sudden limit function given by eq. (21). The deformation parameter is &, = 18. 

the nuclear radius, according to eq. (l), does not exceed about 10%. This means 

that usually the one pair transfer will already be classically forbidden. 

Since the probabilities for pair transfer are typically small in the limit where eq. 

(20) is valid, it is appropriate to expand this equation in a power series. Keeping 

terms to second-order in cx one obtains 

soI = e i2@’ (1 f i2S$“)(r2 - (2Sj”‘)2cy2) , (244 

(24b) 

Szl=e (24~) 

and zero for other values of n. The last expression for n = 2 exhibits the direct and 

sequential components of the amplitude in the first and second terms, respectively. 

It is a characteristic consequence of the ansatz of eq. (1) that the ratio of these 

amplitudes is, to leading order, independent of &. The condition for their equality 



S. Landowne et al. / Transfer reactions 333 

80 120 160 

9 9 

Fig. 4. Estimates for the one- and two-pair transfer cross se Cl .ions shown in fig. 1 according to the formulas 

of eqs. (24), (25). The broken lines show the direct (d) and sequential (s) contributions to the two-pair 
transfer. 

(b) 

is IVg)(rJ~/fi(= 1, which occurs when the nuclear potential at the turning point is 

about 1 MeV deep. 

The analytic results above may be used to estimate differential cross sections 

according to 

(25) 

where the second factor is the Rutherford cross section and 1 is related to 6 by 

tan ($9) = n/l. (26) 

Using the analytic formulas of eqs. (24), (25) for the case of pure Rutherford 

trajectories and retaining only the real part of V,., gives the cross sections shown in 

fig. 4. Comparing them to the numerical results in fig. 1, one sees that the overall 

magnitudes are qualitatively reproduced. The agreement is best for the lower energy 

of fig. 4b and, equivalently, at the more forward angles for the higher energy in fig. 

4a. The n = 2 cross section in fig. 4a is split into its direct (d) and sequential (s) 

contributions, according to eq. (24c), to show how they dominate in different angular 

regions. 

5. Summary 

In this work we have investigated the sudden limit of the pairing-rotor model as 

it is applied to multi-pair reactions. The main result is that the S-matrix elements 

for the transfer processes are given in terms of projection integrals of an elastic 
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scattering S-matrix that depends parametrically on the gauge angle. An application 

to a Cat- Sn collision was carried out to illustrate the technique and also to compare 

to the resuls of classical calculations. The angular distributions for the two-pair 

transfer reflect the interference between the direct and sequential amplitudes and 

show how the direct process dominates as the bombarding energy is lowered below 

the Coulomb barrier. 

At such low energies one can also make a simple semi-classical approximation 

where the elastic scattering phase shift is proportional to the collision time times 

the nuclear potential evaluated at the distance of closest approach. This allows one 

to factorize out the gauge angle dependent part of the phase shift. The transfer 

S-matrices are then given in terms of integrals of known functions. Evaluating these 

integrals by the method of steepest descent shows how the pair-transfer probability 

divides into classically allowed and forbidden regions, in close analogy to the 

excitation of spin states in an ordinary rotational band. Under typical conditions, 

however, the transfer of one pair is already classically forbidden at low bombarding 

energies. 

Because of the weak transfer probabilities, one may also evaluate the integrals 

for the transfer amplitudes using a power series expansion. This yields analytic 

formulas which are useful for estimating transfer cross sections and for exhibiting 

the contributions of different order transfer processes. 

We are grateful to P. Lotti at the University of Padova for the classical calculations 

shown in fig. 2. This work was partially supported by the US Department of Energy 

under contract W-31-109-ENG-38 and by a grant from the Bundesministerium fur 

Forschung und Technologie, BRD (06 LM 177 II). 
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