60 research outputs found

    AURA: Atlas of UTR Regulatory Activity.

    Get PDF
    Abstract Summary: The Atlas of UTR Regulatory Activity (AURA) is a manually curated and comprehensive catalog of human mRNA untranslated regions (UTRs) and UTR regulatory annotations. Through its intuitive web interface, it provides full access to a wealth of information on UTRs that integrates phylogenetic conservation, RNA sequence and structure data, single nucleotide variation, gene expression and gene functional descriptions from literature and specialized databases. Availability: http://aura.science.unitn.it Contact: [email protected]; [email protected] Supplementary information: Supplementary data are available at Bioinformatics online

    G-Quadruplexes in RNA Biology: Recent Advances and Future Directions.

    Get PDF
    RNA G-quadruplexes (RG4s) are four-stranded structures known to control gene expression mechanisms, from transcription to protein synthesis, and DNA-related processes. Their potential impact on RNA biology allows these structures to shape cellular processes relevant to disease development, making their targeting for therapeutic purposes an attractive option. We review here the current knowledge on RG4s, focusing on the latest breakthroughs supporting the notion of transient structures that fluctuate dynamically in cellulo, their interplay with RNA modifications, their role in cell compartmentalization, and their deregulation impacting the host immune response. We emphasize RG4-binding proteins as determinants of their transient conformation and effectors of their biological functions

    CHD8 suppression impacts on histone H3 lysine 36 trimethylation and alters RNA alternative splicing

    Get PDF
    Disruptive mutations in the chromodomain helicase DNA-binding protein 8 gene (CHD8) have been recurrently associated with autism spectrum disorders (ASDs). Here we investigated how chromatin reacts to CHD8 suppression by analyzing a panel of histone modifications in induced pluripotent stem cell-derived neural progenitors. CHD8 suppression led to significant reduction (47.82%) in histone H3K36me3 peaks at gene bodies, particularly impacting on transcriptional elongation chromatin states. H3K36me3 reduction specifically affects highly expressed, CHD8-bound genes and correlates with altered alternative splicing patterns of 462 genes implicated in ‘regulation of RNA splicing’ and ‘mRNA catabolic process’. Mass spectrometry analysis uncovered a novel interaction between CHD8 and the splicing regulator heterogeneous nuclear ribonucleoprotein L (hnRNPL), providing the first mechanistic insights to explain the CHD8 suppression-derived splicing phenotype, partly implicating SETD2, a H3K36me3 methyltransferase. In summary, our results point toward broad molecular consequences of CHD8 suppression, entailing altered histone deposition/maintenance and RNA processing regulation as important regulatory processes in ASD

    Regulation of HuR structure and function by dihydrotanshinone-I

    Get PDF
    The Human antigen R protein (HuR) is an RNA-binding protein that recognizes U/AU-rich elements in diverse RNAs through two RNA-recognition motifs, RRM1 and RRM2, and post-transcriptionally regulates the fate of target RNAs. The natural product dihydrotanshinone-I (DHTS) prevents the association of HuR and target RNAs in vitro and in cultured cells by interfering with the binding of HuR to RNA. Here, we report the structural determinants of the interaction between DHTS and HuR and the impact of DHTS on HuR binding to target mRNAs transcriptome-wide. NMR titration and Molecular Dynamics simulation identified the residues within RRM1 and RRM2 responsible for the interaction between DHTS and HuR. RNA Electromobility Shifts and Alpha Screen Assays showed that DHTS interacts with HuR through the same binding regions as target RNAs, stabilizing HuR in a locked conformation that hampers RNA binding competitively. HuR ribonucleoprotein immunoprecipitation followed by microarray (RIP-chip) analysis showed that DHTS treatment of HeLa cells paradoxically enriched HuR binding to mRNAs with longer 3'UTR and with higher density of U/AU-rich elements, suggesting that DHTS inhibits the association of HuR to weaker target mRNAs. In vivo, DHTS potently inhibited xenograft tumor growth in a HuR-dependent model without systemic toxicity

    The BioMart community portal: an innovative alternative to large, centralized data repositories.

    Get PDF
    The BioMart Community Portal (www.biomart.org) is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide. The portal provides access to numerous database projects supported by 30 scientific organizations. It includes over 800 different biological datasets spanning genomics, proteomics, model organisms, cancer data, ontology information and more. All resources available through the portal are independently administered and funded by their host organizations. The BioMart data federation technology provides a unified interface to all the available data. The latest version of the portal comes with many new databases that have been created by our ever-growing community. It also comes with better support and extensibility for data analysis and visualization tools. A new addition to our toolbox, the enrichment analysis tool is now accessible through graphical and web service interface. The BioMart community portal averages over one million requests per day. Building on this level of service and the wealth of information that has become available, the BioMart Community Portal has introduced a new, more scalable and cheaper alternative to the large data stores maintained by specialized organizations

    Handshakes and Fights: The Regulatory Interplay of RNA-Binding Proteins

    No full text
    What drives the flow of signals controlling the outcome of post-transcriptional regulation of gene expression? This regulatory layer, presiding to processes ranging from splicing to mRNA stability and localization, is a key determinant of protein levels and thus cell phenotypes. RNA-binding proteins (RBPs) form a remarkable army of post-transcriptional regulators, strong of more than 1,500 genes implementing this expression fine-tuning plan and implicated in both cell physiology and pathology. RBPs can bind and control a wide array of RNA targets. This sheer amount of interactions form complex regulatory networks (PTRNs) where the action of individual RBPs cannot be easily untangled from each other. While past studies have mostly focused on the action of individual RBPs on their targets, we are now observing an increasing amount of evidence describing the occurrence of interactions between RBPs, defining how common target RNAs are regulated. This suggests that the flow of signals in PTRNs is driven by the intertwined contribution of multiple RBPs, concurrently acting on each of their targets. Understanding how RBPs cooperate and compete is thus of paramount importance to chart the wiring of PTRNs and their impact on cell phenotypes. Here we review the current knowledge about patterns of RBP interaction and attempt at describing their general principles. We also discuss future directions which should be taken to reach a comprehensive understanding of this fundamental aspect of gene expression regulation

    Mapping of Post-Transcriptional Regulatory Networks by Means of Mechanistic and High Throughput Data

    Get PDF
    Post-transcriptional regulation of gene expression (PTR) is the process responsible for modulating mRNA levels and the related amount of protein. Initially thought to have a limited impact on cell phenotype, it has become increasingly recognized as a strong determinant of the quantitative changes in proteomes, and therefore a driving force for cell phenotypes. Untranslated regions of mRNAs (UTRs) are the core mediator of this process, containing sequence and structural elements bound by various kind of regulators, which influence nuclear export, localization, stability of mRNAs and their translation rates, as well as capping, alternative splicing and polyadenylation of the transcribed pre-mRNA. One of the most important classes of PTR factors are the RNA-binding proteins (RBPs), whose human genome complement is at least 800 genes, characterized by the presence of different functional domains. RBPs bind to the 5’UTR of a transcript often to modulate translation initiation, and to the 3’UTR usually to influence its stability or translatability. Another major group of actors in PTR are noncoding RNAs (ncRNAs). Among them are various classes of long ncRNAs (lncRNAs), the intensively studied microRNAs (miRNAs), siRNAs (small-interfering RNAs) and several other RNA types. miRNAs bind to 3’UTRs by means of short regions of perfect sequence complementation or with some mismatches. Both RBPs and ncRNAs bind mRNAs to the so-called cis-elements, found primarily in 5’ and 3’ UTRs. These elements can be represented as recurring RNA sequences or secondary structures to which the trans factors bind to exert a control over the mRNA. In order to integrate the available experimental data, we have developed AURA, a database offering a comprehensive view of the phenomena through regulatory data including RBP and miRNA binding sites, cis-element annotations, secondary structures, phylogenetic conservation, SNPs, RNA-editing data, gene expression profiles and more. A dynamic graphical interface allows the user to browse through the UTRs in an easy and seamless way. To further enrich this body of data, we also implemented a pipeline for the identification of hyperconserved elements in human UTRs, which we applied to both 5’ and 3’UTRs. We were thus able to recover known and novel PTR mechanisms involving RBPs, including an RBP network controlled by HuR. We are eventually applying the results of these works to infer altered, and thus potentially disease-related, PTR mechanisms in an highthroughput neuroblastoma dataset

    Fingerprints of a message: integrating positional information on the transcriptome

    No full text
    The recent explosion of high-throughput sequencing methods applied to RNA molecules is allowing us to go beyond the description of sequence variants and their relative abundances, as measured by RNA-seq. We can now probe for RNA engagement in polysomes, for ribosomes, RNA binding proteins and microRNAs binding sites, for RNA secondary structure and for RNA methylation. These descriptors produce a steadily growing multidimensional array of positional information on RNA sequences, whose effective integration only would bring to decipher the regulatory interplay occurring between proteins, RNAs and their modifications on the transcriptome. This interplay ultimately dictates the degree of mRNA availability to translation, and thus the occurrence of cell phenotypes. However, several issues in data presentation are slowing down effective integration. A standardization effort for new dataset types produced should be urgently undertaken to solve these issues. Providing uniformed experimental details along with datasets processed to be directly usable and employing shared formats would greatly simplify integration efforts, strengthening hypotheses stemming from correlative observations and eventually bringing to mechanistic understanding
    • 

    corecore