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Highlights
RG4s are four-stranded structures that
have gained growing importance in
RNA biology, RNA-associated human
diseases, and RNA-based therapeutics.

Besides telomere maintenance and
gene expression mechanisms, recent
advances have highlighted new func-
tions of RG4s in the regulation of RNA
expression in mitochondria, in phase
separation mechanisms underscoring
the formation of membrane-less organ-
RNA G-quadruplexes (RG4s) are four-stranded structures known to control gene
expression mechanisms, from transcription to protein synthesis, and DNA-
related processes. Their potential impact on RNA biology allows these structures
to shape cellular processes relevant to disease development, making their
targeting for therapeutic purposes an attractive option. We review here the
current knowledge on RG4s, focusing on the latest breakthroughs supporting
the notion of transient structures that fluctuate dynamically in cellulo, their
interplay with RNA modifications, their role in cell compartmentalization, and
their deregulation impacting the host immune response. We emphasize RG4-
binding proteins as determinants of their transient conformation and effectors
of their biological functions.
elles, and in chemical modifications
within transcripts resulting in dynamic
shaping of post-transcriptional gene
expression pathways.

RG4-binding proteins are key players in
regulating the dynamic equilibrium of
their formation/dissolution in the cell,
controlling their biological functions and
driving their deregulation associated
with human diseases.

RG4s may play a role in the strategies
that pathogenic organisms or cancer
cells use to evade the host’s immune
responses.
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RNA G-Quadruplexes Research Keeps Pace with the Latest Advances in RNA
Biology
The central dogma ‘DNA encodes RNA, RNA encodes protein’ states that RNA is an essential
molecule in the flow of genetic information in cells. Beyond serving as a bridge between DNA
and protein, RNA is critical in a cell to regulate this information, both qualitatively and quantitatively,
thus constituting an essential control point for cellular processes. The corollary adverse effect of the
central role of RNA is its susceptibility to being vulnerable, placing it as the cause or contributor to
various dysfunctions leading to human pathologies [1]. Twomajor features allow the RNAmolecule
to fulfill its key function: the first is that the RNA is versatile and can adopt secondary structures
defined as canonical when using A–T and C–G base pairing (according to Watson–Crick rules)
or non-canonical if disobeying Watson–Crick canons; the second is that RNA is rarely naked,
with protein factors [RNA-binding proteins (RBPs)] as the partners of excellence [2].

RNA G-quadruplexes (RG4s) are non-canonical structures that have gained growing importance
in RNA biology and disease. These are stable four-stranded conformations formed by stacks of
guanine tetrads (G-quartets) held together by Hoogsteen hydrogen bonds (Box 1). The first
reason for this growing interest is the prevalence of these structures, amounting to several thou-
sand in mammalian transcriptomes [3,4], which together with their enrichment in certain RNA
regions (specifically, untranslated regions [5]) or classes (mRNAs, non-coding RNAs (ncRNAs)
[6,7]), have contributed to the notion that RG4s are pervasive and could be biologically significant.
A second reason lies in the tunable nature of RG4s whose folding can be controlled by cations
and small-molecule ligands (see Glossary; Box 1). This not only has been instrumental for
their identification and characterization as key regulators of cellular physiology in the context of
health and disease, but has also opened up opportunities to use them as molecular switches
that can be targeted for therapeutic purposes [8,9]. The consensus from studies at the
transcriptome level or on individual mRNAs is that RG4s are important regulators of all post-
transcriptional steps. There, they can operate in cis or in trans to control when, where,
and how much protein needs to be synthesized and modify the coding capacity of the genome
[9–11] (Figure 1). Misregulation of RG4-mediated RNA biology is associated with perturbations
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Box 1. RNA G-Quadruplexes (RG4s)

RG4s are thermodynamically stable secondary structures in which the guanines, bonded by Hoogsteen hydrogen base pairing, are organized into planar G-quartets
stacked onto one another (Figure I). The stability of the negatively charged core of the G-quartet composed of O6 atoms, the coordination between the G-quartets,
and the base-stacking interactions are governed by intercalated monovalent cations [11]. Biophysical studies highlighted several parameters influencing RG4
conformations including the number of G-quartet stacks, the length/sequence composition of the loops, the occurrence of bulges, the availability/nature of the central
ion, and the sequence in flanking regions. The prevalence of RG4s in the human transcriptome has been revealed by computational analysis based on the early algorithm
searching for the G3–5N1–7G3–5N1–7G3–5N1–7G3–5N1–7 consensus sequence [99,100], or on more recent tools that take into account structural variants (longer loops,
bulges, mismatches, surrounding sequences), or on machine learning approaches [10,101]. Complementing these predictions, RG4 profiling methods based on
RG4-mediated reverse transcriptase pausing or RG4-chemical mapping coupled with high-throughput sequencing have identified approximately 13 000 RG4 forming
regions in 3 000 human mRNAs [3,4]. Interestingly, both computational and sequencing studies underscored not only the enrichment of RG4 structures in untranslated
regions [4,5,102], but also their presence in ncRNAs [8,9,103,104]. This was key to drive subsequent functional analyses (e.g., [19,36,37]) that revealed the biological
relevance of RG4s in the post-transcriptional control of gene expression impacting cellular processes. Recent findings suggesting that almost all RG4s exist in unfolded
conformations in cellulo [3] created a debate regarding their existence in living cells. However, their visualization using antibody-based [26] or small molecule-based
[28,34,35] characterization dampened the skepticism and favored a model of a dynamic RG4 folding controlled by a protein machinery whose characterization
constitutes an emerging challenge in the field [18–25]. The RG4 folding equilibrium is viewed as an on–off switch tuned toward a folded state by stabilizing cations,
RG4-binding proteins, or RG4-stabilizing ligands (e.g., Phen-DC3, BRACO-19, or cPDS) [9]. By contrast, destabilizing ions, G-rich-binding proteins, or RNA helicases
favor the unfolded conformation of RG4s [19,54]. Dysregulation of this tightly controlled equilibrium in pathological situations arises from several mechanisms (e.g., RG4-bind-
ing protein sequestration, aberrant RG4-binding protein expression and localization, disabled RG4–protein interactions [10]), impacts on the expression of disease-associated
mRNAs [10,105], and opens the opportunity to explore the potential for therapeutic targeting of RG4s [8,9].
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Biocomputational methods

Figure I. RNA G-Quadruplex Characteristics. DMSLiPE, dimethyl sulfate with lithium ion-based primer extension; FOLDeR, footprinting of long 7-deaza-guanine-
substituted RNAs; G-rich-BP, G-rich-binding protein; lncRNA, long non-coding RNA; piRNA, Piwi-interacting RNA; RG4-BP, RG4-binding protein; RT, reverse
transcription; SHALiPE, selective 2′-OH acylation with lithium ion-based primer extension; tiRNA, tRNA-derived stress-induced RNA; UTR, untranslated region.
References for the different methods could be found in [9,10,103,106].
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of cellular processes underlying several diseases [10,12] (Figure 1). A third reason, central to this
review, is that RG4 research has kept pace with major advances in RNA biology in recent years.
These structures have been propelled to the forefront of emerging issues, often at the intersection
of multiple disciplines, that could have amajor impact on RNA research over the next decade. The
renewed interest in identifying the RNA protein partners has synchronized RG4 research with
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Glossary
Epitranscriptomics: study of all
functionally relevant chemical
modifications of the transcriptome
(epitranscriptome).
Gel-like condensates: nondynamic
condensates that stimulate RNA granule
formation by increasing the local
concentration of liquid phases.
G-skewness: degree of G/C
asymmetry between the complementary
strands.
Immune checkpoint inhibitors:
drugs that block proteins called
checkpoints, key regulators of the
immune system that when stimulated
can dampen the immune response to an
immunologic stimulus.
Immunological surveillance:
monitoring process of the immune
system that detects and destroys virally
infected and neoplastically transformed
cells.
miRNA: short single-stranded RNA
molecule that targets the RNA
interference silencing complex (RISC) to
specific mRNAs, resulting in decreased
mRNA translation and/or in mRNA
degradation.
Mitochondrial degradosome:
functionally conserved complex
composed of the ATP-dependent RNA
and DNA helicase SUV3 and the
PNPase ribonuclease.
Mitochondrial RNA granules: distinct
RNP structures allowing spatiotemporal
control ofmitochondrial RNA processing
and the biogenesis of mitochondrial
ribosomes.
N6-methyladenosine (m6A): most
prevalent internal RNA modification in
mRNAs consisting in methylation of the
adenosine base at the nitrogen-6
position.
Paraspeckles: RNA–protein nuclear
bodies that regulate gene expression.
P-bodies: processing bodies that
consist primarily of mRNA decay
factors and translationally repressed
mRNAs.
Poly-ADP-ribosylation: fully reversible
post-translational modification with key
roles in cellular physiology.
qRRM: quasi-RNA-recognition motif
(RRM) that binds RNAs using loop
residues rather thanβ-sheet residues (as
the canonical RRM).
RAN translation: translation
mechanism that occurs at pathological
repeat expansions, in the absence of an
initiating codon and in all possible
reading frames, generating
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Figure 1. Role of RNA G-Quadruplexes (RG4s) in RNA Biology, Cellular Processes, and Human Diseases
RG4s can regulate any gene expression step, from transcription to protein synthesis, including pre-mRNA maturation
[including 3′-end processing which results in poly-A tail addition and removal of introns (in red) through splicing], export o
mature transcripts into the cytoplasm, mRNA transport, localization stability, and translation. These regulatory
mechanisms may rely on RG4s found in mRNAs but also in non-coding RNAs such as miRNAs (miR). Besides regulating
transcription (both nuclear and mitochondrial), RG4s in telomeric repeat-containing RNA (TERRA) or at DNA/RNA hybrid
structures (R-loops) can modulate other DNA-related processes such as telomere elongation, DNA replication, and
recombination. RNA-binding proteins (RBPs) are the main RG4 partners assisting them in all their cellular functions as wel
as regulating the equilibrium between their structured and unstructured form. In turn, the activity of RBPs can be
modulated by RG4s through sequestration mechanisms. Recent advances propose an important role for RG4s in the
biology of mitochondrial RNA, in the formation of condensates mediated by phase separation mechanisms, and in RNA
modifications key to gene expression pathways. RG4-mediated regulation, possibly in synergy or competition with RBPs
can affect several cellular processes (blue box) and thus impinge on pathological situations associated with human
diseases (purple box). Abbreviations: ALS, amyotrophic lateral sclerosis; FXS, fragile X syndrome; FTD, frontotempora
dementia.
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homopolymeric proteins with glutamine,
serine, or alanine repeats.
Repeat expansion RNAs: repeat-
containing transcripts whose
accumulation leads to the formation of
RNA foci, a common pathological
feature of neurological and
neuromuscular disorders.
R-loops: three-stranded DNA–RNA
hybrids inwhich the nascent RNA strand
binds to the DNA.
RNA foci: RNA–RBP complexes or
aggregates formed by expanding RNA
repeats that can become toxic to the
cell, leading to neurodegenerative
disorders.
Small-molecule ligands: natural or
purely synthetic heteropolyaromatic
planar chromophores which bind RG4
via π−π stacking to a terminal G-quartet
and is composed of one or more flexible
substituents with a cationic charge that
bind quadruplex grooves and loops.
Based on the relative arrangement of the
aromatic rings, three major families have
been identified: (i) fused aromatic
polycyclic systems (e.g., berberine,
quarfloxin, Phen-DC3, RHPS4,
BRACO-19), (ii) macrocycles
(telomestatin, pyridostatin,
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other new avenues in the field of RNA biology. The impetus driving these factors into the spotlight
has surely been the development of new technologies that capture RBPs at the system-wide level
[13–17] (Box 2).

In this review, we discuss the latest breakthroughs on RG4s, focusing on the RBPs regulating
their structure and function in physiological and pathological processes, and emphasizing the
most recent advances in our understanding of RNA regulation. In particular, we discuss the
transient nature of RG4s and outline the mechanistic link between RG4s and RNA modifications,
mitochondria, phase transitions, and immune evasion. This will be implemented through an
analysis that intersects proteomics data identifying RBPs [13–17] with the most recent data
sets on RG4-binding factors [18–25].

RG4 Folding Dynamics
A substantial body of literature supports the view that RG4 formation plays various functions in
both RNA and DNA biology. Their dysregulation due to mutations in the RG4-forming
sequences or via the alteration of the association with trans factors contributes to human
pathologies such as neurodegenerative diseases, cancer, or microbial infections (Figure 1).
The pervasive nature of RG4s has been demonstrated by surveying the extent of their structur-
ation both in vitro using transcriptome-wide reverse transcriptase stalling assay [3,4] and
in cellulo using imaging studies with antibodies [26] or molecular probes [27–31] (Box 1). By
contrast, but consistent with previous in cellulo RNA folding studies [32], RG4s in mRNAs
appeared to be predominantly unfolded in steady-state RG4-seq experiments in human cells
[3]. Overall, these studies suggest that RNA structures, whether they are RG4s or others,
form secondary structures if given the opportunity.
carboxypyridostatin), and (iii) nonfused
aromatic systems with flexible structural
motifs.
Stress granules: cytoplasmic
assemblies of untranslating messenger
RNPs formed in stress conditions.

Box 2. RNA-Binding Proteins (RBPs)

RBPs are a key class of factors in post-transcriptional regulation of gene expression. Consisting of more than 1300 human
genes, they are involved in a host of processes ranging from alternative splicing and polyadenylation to the control of
mRNA localization, stability, and translation [107]. Able to compete, cooperate, and autoregulate their own expression
to control a wide set of targets, RBPs give rise to a complex network of interactions allowing the fine-tuning of gene
expression [108]. The role played by RBPs in modulating such fundamental cellular processes reveals their importance
as regulatory nexus to control not only specific gene expression but also intracellular organization [109]. This role has
profound implications for the development of several pathologies. Alterations to expression of RBPs, binding ability, and
interactions are indeed increasingly associated with the onset and progression of cancer [110] and neurological diseases
[111]. From a translational point of view, it underlines the importance of these factors in the clinic, offering potential
opportunities for developing therapeutic strategies [112].

A Modular Lifestyle

The structure of many RBPs is modular, building on a limited number of RNA-binding domains (RBDs) that can be further
complemented by auxiliary domains. The most frequent RBD in higher vertebrates is the RNA-recognition motif (RRM).
The RRM is a small domain of around 80 amino acids that can occur in one or multiple copies whose arrangement can
lead to different RNA-binding specificities. Combinations of different RBDs are also observed, allowing to further increase
the diversity and complexity of targets recognized by RBPs. More recently, a number of unknown RBDs have been
discovered, suggesting multifunctional domains combining RNA binding with enzymatic activity or protein–protein
interaction capabilities to be frequent, thus potentially further expanding the functions of RBPs [113].

New RBPs and New Functions

The known repertoire of RBPs may still be partial, particularly if considering those that could function through yet unknown
RBDs. Therefore, several approaches have recently been developed to probe for proteins interacting with different RNA
species at the transcriptome-wide level and in cellulo [13–17]. These methods allowed to identify several new classes of
RBPs, including intrinsically disordered proteins and many metabolic enzymes whose role in RNA regulation is still to be
understood. These unorthodox RBPs may thus ‘moonlight’ from their primary role, thus contributing to increase the
complexity of this layer of gene expression regulation.

4 Trends in Biochemical Sciences, Month 2020, Vol. xx, No. xx
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However, in vivo, since mRNAs must be unfolded to fulfill their messenger function, they are
challenged by cellular components that convert them to either a linear form or an alternative
Watson–Crick base pair structure. In view of their abundance and their ability to regulate all
post-transcriptional gene expression steps, RBPs emerged as leading candidates to regulate
RG4 folding in cellulo, paving the way for several studies that characterized the RG4-binding
protein machinery using unbiased RNA affinity proteomic-wide approaches (termed RNA purifi-
cation coupled with mass spectrometry, RP-MS) [18–25] and/or in silico analysis of the associa-
tion between RG4-forming sequences and RBP-binding sites [5,33]. These studies, together
with recent in cellulo RG4-capturing approaches [34] and live-cell imaging of RG4 folding and
unfolding [35], provided evidence of transient RG4 folding while reinforcing the view that some
RBPs play a role in shifting RG4s toward an unfolded state. These have been recently identified
using the RP-MS approach with RNAs in which 7-deaza-guanines prevented RG4 structuration.
This study highlighted a sequential mechanism in which the RNA helicase DHX36 first unwinds
the RG4 followed by the binding of hnRNP H/F (heterogeneous nuclear ribonucleoprotein H/F)
which maintain the RG4 unstructured, thereby regulating the translational efficiency of mRNAs
playing a role in aggressive forms of brain tumors (glioblastoma; Figure 2A). This ‘bind–unfold–
lock’ mechanism was also proposed for CNBP, resulting in increased protein synthesis [33].
RNA helicases proved to be important players in the RG4 dynamics linked to mRNA translation
[36,37], where RBPs could also participate in recruiting them on specific RG4-containing
mRNAs [38].

The transient nature of RG4s can also depend on the need to fold RG4s in particular cell types or
stages. For instance, in B cells, the RNA helicase DDX1 unfolds RG4s in ncRNAs generated by
splicing at immunoglobulin switch regions, resulting in the formation of R-loops that promote
IgH class-switch recombination [39]. Another example is the antagonizing interplay between
the SMaRT ncRNA and DHX36 that controls the translation of an RG4-containing mRNA in
early phases of muscle differentiation [40]. Finally, the mode of action of helicases could also
explain the transient and dynamic nature of RG4s, as demonstrated by the structural character-
ization of DHX36 bound to an RG4 showing repetitive cycles of ATP-independent unfolding and
ATP-dependent RG4 refolding [41].

RG4s and RNA Modifications
Emerging evidence supports a link between RG4s and epitranscriptomics. The epitranscriptome
extends to all cellular RNA classes, encompassing more than 170 modifications, including internal
modifications, and is dynamically regulated by the activity of enzymes. Chemical modifications within
transcripts affect both the structure and the ability to interact with RBPs, resulting in dynamic shap-
ing of post-transcriptional gene expression. While the fundamental question of the mechanisms that
control selectivity in the deposition and erasing of modifications remains unanswered, themost likely
clues concern the ability of effector proteins to recognize sequence or structural elements [42]. Given
their conformational plasticity and their ability to selectively attract RBPs, RG4s could provide the
modification enzymes with a means of specific recognition and regulatory selectivity. A possible
RG4–epitranscriptome interplay is suggested by RP-MS studies, indicating that RG4-forming se-
quences may recruit factors that write, read, and erase these RNAmarks (Figure 3 and Supple-
mental Table S1). These include several methyltransferases (such as TRMT112, RMNT,
BUD23, or NSUN5) and RBPs that can be recruited or repelled by N6-methyladenosine
(m6A) [43,44]. Importantly, some of these enzymes may display RG4 conformational-dependent
affinity (as for the demethylase ALKBH5 or the methyltransferase METTL16 [19]).

While the role of RG4s in regulating the RNA accessibility of epitranscriptomic factors remains
to be demonstrated, their importance in RG4-dependent gene expression modulation linked
Trends in Biochemical Sciences, Month 2020, Vol. xx, No. xx 5
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Figure 2. Focus on Emerging Mechanisms Regulating RNA G-Quadruplex (RG4) Structuration and
Function. (A) RG4s are highly regulated in cellulo by proteins that specifically recognize them in their structured or
unstructured form. An example of this dynamic equilibrium is that of hnRNP H/F (H/F) whose recruitment is mediated
by the unwinding activity of the helicase DHX36, thus allowing its association with linearized RG4s and resulting in
translational regulation of the mRNAs coding for factors involved in the response to glioblastoma treatment [19].
(B) RG4s can affect modifications of RNA bases that are essential to regulate the structure, expression, and function of
mRNAs. This emerging mechanism has been proposed for METTL1, which catalyzes the methylation of guanosine on
position N7 (m7G) within RG4s, thus promoting the formation of the double-stranded structures that are necessary for
processing of pre-miRNAs (pre-miR) to miRs involved in the regulation of mRNA expression encoding cell migration
protein relevant to lung cancer [45]. (C) In addition to transcription termination (Figure 1), RG4s may play a role in
mitochondrial surveillance mechanisms. This involves GRSF1 RBP, which keeps unfolded the RG4s present in
abundant non-coding RNAs antisense to functional mRNAs, thus promoting their degradation by the degradosome
(including hSuv3 and PNPase) and enabling mitochondrial mRNA expression [54]. (D) RG4s together with RG4-
binding proteins may promote the formation of RNA condensates through phase separation mechanisms resulting in
membrane-less granules, as those formed by the RG4-forming rG4C2 repeats involved in neurodegenerative
disorders, such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) [73,74]. mtRNA,
mitochondrial RNA.

Trends in Biochemical Sciences
to RNA modifications has recently been demonstrated for m7G methylation by METTL1
within miRNAs [45]. The proposed model involved METTL1 binding to RG4-forming
sequences, resulting in internal m7G deposition. Since this modification interferes with
Hoogsteen but not Watson–Crick base pairing, METTL1-dependent modification impedes
RG4 folding while promoting canonical base pairing required for proper processing of
tumor suppressor miRNAs (Figure 2B). As METTL1 has been shown to be involved in
lung cancer cell migration [45], RG4-forming sequences would confer METTL1 selectivity
toward a specific pool of miRNAs regulating cellular processes linked to cancer
development.
6 Trends in Biochemical Sciences, Month 2020, Vol. xx, No. xx
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Figure 3. RNA G-Quadruplex (RG4) Protein Partners with Functions in Phase Separation, Mitochondria, RNA
Modification, or Viral Pathogenesis. Protein factors found to be interacting with RG4s using RNA affinity chromatography
followed by mass spectrometry (RP-MS), grouped according to their function in phase separation, mitochondria, RNA
modification, or viral pathogenesis (Supplemental Table S1). RNA-binding proteins (RBPs) associated with these differen
functions were further clustered to highlight their identification in RNA granules (e.g., in mitochondria), their binding preference
[i.e., whether they recognize (reader) or are repelled by the N6-methyladenosine (m6A) RNA modification], or their cellular or vira
origin. The color of each RG4-binding protein rectangle indicates whether it binds structured or linear RG4s. The symbols indicate
the function of these factors in RNA biology. In bold are highlighted selected RG4-binding proteins containing an RGG domain.
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These findings support the view that, in addition to hairpins, four-stranded conformations could
cooperate with RNA modifications to guide RNA–protein interactions [46], thereby influencing
post-transcriptional gene expression and controlling many cellular functions. In line with this,
recent bioinformatics analyses of RG4s colocalizing with m6A suggest that RNA modifications
and RG4s could cooperate to regulate pre-mRNA alternative splicing [47] or viral post-
transcriptional gene expression [48]. Other indirect but promising pieces of evidence support
that RG4s might be part of the structural ‘switch’ induced by the pseudouridylation of tRNA-
derived fragments important for translation initiation impacting stem cell commitment during
key developmental processes [49].

RG4s and Mitochondria
In addition to the guanine number in G-tracts, G4 formation also depends on the G-skewness,
which is a feature of the mitochondrial genome. Consistent with the in silico analysis predicting
almost three times more G4s in mitochondrial DNA than in nuclear DNA [50], live-cell imaging
microscopy revealed that the G4 small-molecule ligand RHPS4 localizes primarily into mitochon-
dria and is retained by binding nucleic acids [51]. Despite this enrichment, knowledge on the role
of RG4s in mitochondrial metabolism is still in an early phase. There is evidence that, in human
mitochondria, transcription termination at an RG4-forming sequence near the replication origin
drives mitochondrial DNA replication by generating an RNA primer. The underlying molecular
mechanism involved an antitermination complex, in which the transcription factor TEFM prevents
the formation of the RG4 required for transcription termination, thus promoting the synthesis of
the replication primer [52].

Recently, TEFM was also found to regulate RNA processing and interact with RNA processing
factors, including known RG4-binding proteins, such as GRSF1 [53]. While the role of TEFM in
connecting transcription and RNA processing, possibly via RG4s, requires further molecular
investigation, it appears that the G-rich binding activity of GRSF1 is key to control mitochondrial
RNA levels. Specifically, GRSF1 melts the RG4s in abundant ncRNAs that are antisense to
functional mRNAs, promoting their degradation by the mitochondrial degradosome [54]
(Figure 2C). Similar to hnRNP H/F [55], GRSF1 uses quasi-RNA-recognition motif (qRRMs)
to sequester G-tracts and maintain them in a single-stranded conformation [54]. The role of
additional factors in this surveillance mechanism remains to be determined (e.g., LRPPRC or
the transcription factor TFAM, both interacting with TEFM [53] and RG4s [19]). The growing
inventory of RG4-binding proteins (Figure 3 and Supplemental Table S1) is expected to contribute
to future investigations, further supporting the role of RG4s in mitochondrial gene expression
regulation and coordination within mitochondrial RNA granules [56] or the synchronization
of cytoplasmic-mitochondrial translation [57].

RG4s and Phase Transitions
RG4s have been proposed to contribute to liquid–liquid phase separation (LLPS), in which
metastable demixing of proteins and RNAs triggers the temporal and spatial organization of
biochemical reactions [58]. LLPS underlines the formation of membrane-less organelles in the
nucleus and the cytosol, such as cytoplasmic P-bodies, stress granules, paraspeckles,
and RNA foci formed from repeat expansion RNAs. These ribonucleoprotein (RNP) granules,
formed by transient multivalent protein–protein, RNA–RNA, and protein–RNA interactions, are
involved in multiple aspects of RNA metabolism [59] and are linked to diseases, including viral
infection, neurodevelopmental disorders, and cancer [60]. Specificity for the protein-driven
LLPS can be achieved by proteins having repetitive modular domains and intrinsically disordered
regions with weakly adhesive motifs. Post-translational modifications of RBPs (including poly-
ADP-ribosylation, e.g., [61]), phosphorylation (e.g., [62]), and arginine methylation (e.g., [63])
8 Trends in Biochemical Sciences, Month 2020, Vol. xx, No. xx



Trends in Biochemical Sciences
OPEN ACCESS
or their protein partners (e.g., [64]) emerged as important regulators of LLPS. Intermolecular
interactions between RNAs, promoted by high local RNA concentrations and driven by specific
sequences and structures (canonical or non-canonical), are believed to trigger RNA condensa-
tion necessary for RNP formation. Other RNA properties potentially contributing to LLPS include
the length and level of translation [65], the RNA-to-protein ratio [66], and the presence of modified
bases (specifically m6A [67]).

Several RG4 features qualify them as candidate contributors to LLPS. First, at high concentra-
tions, poly-guanosine can form gel-like structures in aqueous solutions [11]. These nondynamic
gel-like condensates might stimulate LLPS by increasing the local concentration of liquid
phases [68]. Second, RG4s formed in cis or in transmay promote the recruitment of protein fac-
tors leading to protein condensates potentially involved in LLPS-induced RNA granules. As an ex-
ample, RG4s derived from tRNAs have been recently proposed to assemble in tetramolecular
RG4 structures that could act as molecular scaffolds to promote high-local concentrations of
RG4-binding proteins, thus triggering phase transitions that nucleate stress granule formations
[69]. Similarly, the interaction between NONO and several RG4s identified within the ncRNA
NEAT1 could contribute to seed paraspeckles formation [24]. Third, RG4-binding proteins
often contain arginine-/glycine-rich regions (or RGG domain) [70] that are intrinsically disordered,
thus presenting conformational flexibility mediating degenerate specificity in RNA binding [71].
This degeneracy may allow RBP oligomerization along the transcripts or multivalent interactions
with multiple RNAs at the same time, both important to create RNP assemblies promoting
LLPS. Moreover, RGG domains mediate protein–protein interactions, and tandem or triplet RGG
gives rise to robust liquid–liquid demixing even in the absence of RNA [72].

While several features link the dynamics of RG4s to LLPS, understanding of this connection is
limited. The requirement of RG4s for LLPS-mediated formation of RNA granules was demon-
strated for the transcripts generated by the GGGGCC hexanucleotide repeats (rG4C2) in
C9orf72 gene, the most common mutation associated with amyotrophic lateral sclerosis and
frontotemporal dementia (C9-ALS/FTD) [73]. Similar to the relationship between the repeat
length of C9orf72 and the pathogenesis of C9-ALS/FTD, rG4C2 repeat length correlates
with the degree of protein condensation [73,74], suggesting a link between RNA phase
separation and the number of G-quartets (Figure 2D). Although rG4C2 foci formation may
lead to phase separation without the requirement of trans-acting factors, the rG4C2 repeat
number required for RNA condensation is higher in cellulo than in vitro [74], supporting the
notion of a protein machinery unfolding RG4s in living cells [3]. hnRNP H is a candidate for
modulating RNA foci formation since it binds rG4C2 repeats [75] and can maintain RG4s in
an unfolded conformation [19,75]. RG4s may also indirectly influence C9-ALS/FTD-linked
LLPS by modulating repeat-associated non-AUG (RAN) translation occurring at
C9orf72 repeats, which generates toxic arginine-rich dipeptides that in turn can promote
LLPS [76]. In the case of the RG4 formed at the SHORT ROOT (SHR) RNA, which is important
in plant development, phase separation is enhanced by a higher number of G-quartets and
longer loops, strengthening the notion that both RG4 stability and their multivalent interactions
are critical for RG4-triggered phase separation [77].

Although RG4s appear to confer structural specificity when initiating phase separation [73], the
role of trans-acting factors remains unclear. Several RG4-binding proteins have been found in
the LLPS protein collection [78] (Figure 3 and Supplemental Table S1), paving the way for future
studies. As several of these factors contain an RGG domain (Figure 3) and RGG methylation is
involved in both RG4-dependent regulation [38] and LLPS [63,76], it would be interesting to
investigate whether and how arginine methylation is involved in RG4-dependent LLPS
Trends in Biochemical Sciences, Month 2020, Vol. xx, No. xx 9
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mechanisms of RNA granule formation. Other challenging questions regarding the RG4–LLPS
interplay raised by recent findings in both RG4 field (this review) and RNA-mediated regulation
of LLPS [79] are whether (i) this interplay is modified by RNA modifications or is involved in trans-
lational regulation [80], (ii) RG4 structuration is similar in the condensed phase compared with the
dilute one, as suggested in [81], and (iii) given the role of RG4s in RNA transport [82], whether this
interplay impacts RG4-containing mRNAs or ncRNAs localization or cell compartmentalization.

RG4 Misregulation in Disease: Focus on Immune Evasion
The importance of RG4s in disease was initially suggested by the observation that RG4 folding
modulates the expression of transcripts having a central role in human pathologies, such as
those encoded by the oncogene NRAS, the tumor suppressor TP53, and the Epstein-Barr
virus (EBV) protein EBNA1 [10]. Several models explaining how RG4s affects diseases have
been proposed. This includes cis-mechanisms where RG4s resulting from repeat expansion
mutations in the untranslated regions modify mRNA translation (by blocking it or inducing
alternative translation initiation), or trans-mechanisms that either use RG4s to sequester gene
expression regulatory protein factors or result from the mutation and altered expression of
RG4-binding proteins [10]. Among the cellular processes hijacked by altered RG4 regulation,
there are proliferation and survival, cell cycle, apoptosis, differentiation, invasion and migration,
antigen presentation, and immunoglobulin class switch recombination (Figure 1). In addition to
cancer, microbial pathogenesis, and neurodegeneration, recent studies point to a possible
implication of RG4 dysregulation in congenital heart disease [83] and obesity [84].

Recent evidence suggests that RG4s may play a role in the strategies that pathogenic organisms
or cancer cells use to evade the host immune response, termed immune evasion. For viruses,
RG4s repress the expression of viral proteins, some of which play immunomodulatory roles by
restricting antigen presentation to cytotoxic T cells, allowing the virus to persist in infected cells
without being recognized by the host immune system. Two different mechanisms have been
reported for the viral proteins EBNA1 and LANA, which are functional homologs in EBV and
Kaposi’s sarcoma-associated herpesvirus, respectively. The first exploits the ability of RG4s in
both EBNA1 and LANA mRNAs coding sequences to inhibit the translation of these proteins.
The structure–immune function relationship was demonstrated by modulating RG4s folding,
which then resulted in the altered expression of the viral proteins and, in turn, in modified antigen
presentation [85–87]. Although the molecular mechanism awaits further investigation, host
cell protein factors (hnRNP A1 and nucleolin for LANA and EBNA1 mRNAs, respectively)
take part in this regulation by interacting with RG4 structures [86,87]. This is consistent
with the observation that terms associated with viral infection are over-represented in cellular
RG4–protein interaction data sets [5,18,19,87]. Additional work supports the notion of nucleolin
as a host factor for antiviral immunity and suggests that nucleolin expression is regulated by
viral infection [88]. The proposed model involves the induction of nucleolin by hepatitis C virus
infection, which binds viral core RG4s, resulting in the suppression of hepatitis C virus replication.

The secondmechanism implies the direct binding of viral proteins to RG4s. This was anticipated for
EBNA1 [89] but has only recently been demonstrated in detail for LANA, which uses this RG4-
binding activity to bind its mRNA. LANA thus self-regulates its expression by mRNA sequestration
in the nucleus and competing with hnRNP A1 for association with RG4s at the LANA mRNA [87]
(Figure 4A). This mechanism was also reported for the nsp3 of SARS coronavirus—severe acute
respiratory syndrome coronavirus (SARS-CoV) [90] and severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [91]. The interaction between RG4s and viral proteins might also
contribute to LLPS-dependent viral RNA packaging and host proteins co-opting [92–94].
Considering that SARS-CoV-2 coronavirus is the key culprit responsible for the coronavirus
10 Trends in Biochemical Sciences, Month 2020, Vol. xx, No. xx



Outstanding Questions
Interplay between RG4s and RBPs:
what are the upstream regulatory
signaling pathways? How do post-
translational modifications of RBPs
and/or RG4 epitranscriptomic modifi-
cations impact on RG4-associated
biology and disease? Do specific inter-
actions coordinate the expression of
functionally correlated genes?

RG4s and cell compartmentalization:
in addition to RNA granules, do RG4s
contribute to the formation of other
cell compartments? What are the
molecular determinants governing the
formation of specific condensates?

RG4 binders:What else besides cations,
RBPs, and synthetic small molecules?
Are RG4s able to sequester molecules
from metabolic pathways as shown for
heme? What are the consequences for
the cell?

RG4s and disease: How does the RG4
structural equilibrium shift and what are
the underlying molecular mechanisms?
Aside from translational regulation,
which other processes are involved in
modulating the immune response?
Does RG4 targeting represent a real
therapeutic opportunity?

(A) Viral immune evasion (B) Cancer immune evasion

T CELL
T CELL

IMMUNE EVASION IMMUNE EVASION

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

L

L

L
L

L

A1
A1

A1 STAT1

STAT1A1
Nuclear
export Translation

Translation

Proteasome

Antigen presentation

Viral genome
maintenance

4F

cytoplasm

cytoplasm

nucleus

nu
cle

us

PD-L1

PD-L1

PD-1

STAT1 mRNA

CANCER CELL

LANA mRNA

Immune cells Immune cells

IFN-γ

TrendsTrends inin BiochemicalBiochemical Sciences Sciences

Figure 4. Focus on RNAG-Quadruplex (RG4) Functions and Immune Response. (A) The viral protein LANA (L) can
self-regulate its protein expression by binding to an RG4 within its own mRNA, thereby inhibiting its export to the cytoplasm.
The RBP hnRNP A1 (A1) competing with LANA (L) for RG4 binding promotes LANA mRNA export and translation. This
results in an increase in LANA-derived antigens and stimulation of the antiviral cellular response [87]. (B) The eIF4F (4F)
initiation complex regulates the RG4-dependent translation of the mRNA encoding STAT1, a transcription factor known to
regulate the interferon-γ (IFN-γ)-induced expression of PD-L1. PD-L1 binding to PD-1 triggers the inhibition of cytotoxic
T cells proliferation and activity, resulting in a dampened immune response against tumor cells [97].
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disease 2019 (COVID-19) pandemic and that the expression of host genes in SARS-CoV-2-
infected cells is extremely inhibited [95], investigating whether, when, and how SARS–RG4
interactions impair the immune response of host cells is of the outmost importance.

The potential for RG4s to act as immunomodulators has also been proposed for cancer cells
via the regulation of signaling transducers modulating the expression of immune checkpoint
inhibitors. Specifically, both G4-stabilizing ligands and natural compounds inhibiting eIF4A,
an initiation factor with potential RG4-resolving activity [96], modulate mRNA translation of
STAT1, an upstream transcriptional activator of the negative immune checkpoint PD-L1 [97]
(Figure 4B). It remains to be fully determined whether the STAT1–PD-L1 axis, impacting tumor
immune escape, relies on RG4-dependent regulation.

Concluding Remarks
The renewed interest in RBP identification and the latest advances in RNA biology regulation,
fostered by cutting-edge approaches at the transcriptome and proteome scales, have shaped
the future directions of research in the field of RG4s over the coming decades. There is recent
evidence that these structures, in synergy with RBPs, can be dynamically regulated in cellulo
and play a key role in regulating chemical RNA composition or cell compartmentalization (both
membrane-bound and membrane-less). Nevertheless, many questions in fundamental and
translational biology remain unanswered, and new questions have arisen (see Outstanding
Questions). Future research is expected to continue focusing on these research lines to improve
our understanding of the underlying molecular mechanisms and uncover the extent of these
regulations, their biological consequences, and their connections to diseases. The molecular
partnership between heme and RG4s also points to a new research direction, aimed at exploring
the link between RG4s and metabolism [98]. Another major area of interest for RG4s is their
potential impact in immunological surveillance, which is the target of cutting-edge therapeutic
strategies against cancer and viral infections. The identification of several cellular and viral factors
(including those of SARS coronavirus) that bind RG4s and play a role in viral infections (Figure 3)
opens up new perspectives to further investigate this connection and define whether targeting
RG4s or their protein partners may offer an opportunity to counteract viral replication.
Trends in Biochemical Sciences, Month 2020, Vol. xx, No. xx 11
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