302 research outputs found
Mantle formation, coagulation and the origin of cloud/core-shine: II. Comparison with observations
Many dense interstellar clouds are observable in emission in the near-IR,
commonly referred to as "Cloudshine", and in the mid-IR, the so-called
"Coreshine". These C-shine observations have usually been explained with grain
growth but no model has yet been able to self-consistently explain the dust
spectral energy distribution from the near-IR to the submm. We want to
demonstrate the ability of our new core/mantle evolutionary dust model THEMIS
(The Heterogeneous dust Evolution Model at the IaS), which has been shown to be
valid in the far-IR and submm, to reproduce the C-shine observations. Our
starting point is a physically motivated core/mantle dust model. It consists of
3 dust populations: small aromatic-rich carbon grains; bigger core/mantle
grains with mantles of aromatic-rich carbon and cores either made of amorphous
aliphatic-rich carbon or amorphous silicate. We assume an evolutionary path
where these grains, when entering denser regions, may first form a second
aliphatic-rich carbon mantle (coagulation of small grains, accretion of carbon
from the gas phase), second coagulate together to form large aggregates, and
third accrete gas phase molecules coating them with an ice mantle. To compute
the corresponding dust emission and scattering, we use a 3D Monte-Carlo
radiative transfer code. We show that our global evolutionary dust modelling
approach THEMIS allows us to reproduce C-shine observations towards dense
starless clouds. Dust scattering and emission is most sensitive to the cloud
central density and to the steepness of the cloud density profile. Varying
these two parameters leads to changes, which are stronger in the near-IR, in
both the C-shine intensity and profile. With a combination of aliphatic-rich
mantle formation and low-level coagulation into aggregates, we can
self-consistently explain the observed C-shine and far-IR/submm emission
towards dense starless clouds.Comment: Paper accepted for publication in A&A with companion paper "Mantle
formation, coagulation and the origin of cloud/core-shine: I. Dust scattering
and absorption in the IR", A.P Jones, M. Koehler, N. Ysard, E. Dartois, M.
Godard, L. Gavila
Mantle formation, coagulation and the origin of cloud/core shine: I. Modelling dust scattering and absorption in the infra-red
Context. The observed cloudshine and coreshine (C-shine) have been explained
in terms of grain growth leading to enhanced scatter- ing from clouds in the J,
H and K photometric bands and the Spitzer IRAC 3.6 and 4.5 {\mu}m bands. Aims.
Using our global dust modelling approach THEMIS (The Heterogeneous dust
Evolution Model at the IaS) we explore the effects of dust evolution in dense
clouds, through aliphatic-rich carbonaceous mantle formation and grain-grain
coagulation. Methods. We model the effects of wide band gap a-C:H mantle
formation and the low-level aggregation of diffuse interstellar medium dust in
the moderately-extinguished outer regions of molecular clouds. Results. The
formation of wide band gap a-C:H mantles on amorphous silicate and amorphous
carbon (a-C) grains leads to a decrease in their absorption cross-sections but
no change in their scattering cross-sections at near-IR wavelengths, resulting
in higher albedos. Conclusions. The evolution of dust, with increasing density
and extinction in the diffuse to dense molecular cloud transition, through
mantle formation and grain aggregation, appears to be a likely explanation for
the observed C-shine.Comment: 12 pages, 15 figures, accepted for publication in A&A along with the
companion paper entitled, Mantle formation, coagulation and the origin of
cloud/core shine: II Comparison with observations, by Ysard et al. (also
accepted for publication in A&A
The global dust SED: Tracing the nature and evolution of dust with DustEM
The Planck and Herschel missions are currently measuring the farIR-mm
emission of dust, which combined with existing IR data, will for the first time
provide the full SED of the galactic ISM dust emission with an unprecedented
sensitivity and angular resolution. It will allow a systematic study of the
dust evolution processes that affect the SED. Here we present a versatile
numerical tool, DustEM, that predicts the emission and extinction of dust given
their size distribution and their optical and thermal properties. In order to
model dust evolution, DustEM has been designed to deal with a variety of grain
types, structures and size distributions and to be able to easily include new
dust physics. We use DustEM to model the dust SED and extinction in the diffuse
interstellar medium at high-galactic latitude (DHGL), a natural reference SED.
We present a coherent set of observations for the DHGL SED. The dust components
in our DHGL model are (i) PAHs, (ii) amorphous carbon and (iii) amorphous
silicates. We use amorphous carbon dust, rather than graphite, because it
better explains the observed high abundances of gas-phase carbon in shocked
regions of the interstellar medium. Using the DustEM model, we illustrate how,
in the optically thin limit, the IRAS/Planck HFI (and likewise Spitzer/Herschel
for smaller spatial scales) photometric band ratios of the dust SED can
disentangle the influence of the exciting radiation field intensity and
constrain the abundance of small grains relative to the larger grains. We also
discuss the contributions of the different grain populations to the IRAS,
Planck and Herschel channels. Such information is required to enable a study of
the evolution of dust as well as to systematically extract the dust thermal
emission from CMB data and to analyze the emission in the Planck polarized
channels. The DustEM code described in this paper is publically available.Comment: accepted for publication in A&
Nature and evolution of the dominant carbonaceous matter in interplanetary dust particles: effects of irradiation and identification with a type of amorphous carbon
Aims.Interplanetary dust particle (IDP) matter probably evolved under irradiation in the interstellar medium (ISM) and the solar nebula. Currently IDPs are exposed to irradiation in the Solar System. Here the effects of UV and proton processing on IDP matter are studied experimentally. The structure and chemical composition of the bulk of carbon matter in IDPs is characterized. Methods: .Several IDPs were further irradiated in the laboratory using ultraviolet (UV) photons and protons in order to study the effects of such processing. By means of infrared and Raman spectroscopy, IDPs were also compared to different materials that serve as analogs of carbon grains in the dense and diffuse ISM. Results: .The carbonaceous fraction of IDPs is dehydrogenated by exposure to hard UV photons or 1 MeV protons. On the other hand, proton irradiation at lower energies (20 keV) leads to an efficient hydrogenation of the carbonaceous IDP matter. The dominant type of carbon in IDPs, observed with Raman and infrared spectroscopy, is found to be either a form of amorphous carbon (a-C) or hydrogenated amorphous carbon (a-C:H), depending on the IDP, consisting of aromatic units with an average domain size of 1.35 nm (5-6 rings in diameter), linked by aliphatic chains. Conclusions: .The D- and 15N-enrichments associated to an aliphatic component in some IDPs are probably the result of chemical reactions at cold temperatures. It is proposed that the amorphous carbon in IDPs was formed by energetic processing (UV photons and cosmic rays) of icy grains, maybe during the dense cloud stage, and more likely on the surface of the disk during the T Tauri phase of our Sun. This would explain the isotopic anomalies and morphology of IDPs. Partial annealing, 300-400°C, is required to convert an organic residue from ice photoprocessing into the amorphous carbon with low heteroatom content found in IDPs. Such annealing might have occurred as the particles approached the Sun and/or during atmospheric entry heating
ISO spectroscopy of gas and dust: from molecular clouds to protoplanetary disks
Observations of interstellar gas-phase and solid-state species in the 2.4-200
micron range obtained with the spectrometers on board the Infrared Space
Observatory are reviewed. Lines and bands due to ices, polycyclic aromatic
hydrocarbons, silicates and gas-phase atoms and molecules (in particular H2,
CO, H2O, OH and CO2) are summarized and their diagnostic capabilities
illustrated. The results are discussed in the context of the physical and
chemical evolution of star-forming regions, including photon-dominated regions,
shocks, protostellar envelopes and disks around young stars.Comment: 56 pages, 17 figures. To appear in Ann. Rev. Astron. Astrophys. 2004.
Higher resolution version posted at
http://www.strw.leidenuniv.nl/~ewine/araa04.pd
Random volumes from matrices
We propose a class of models which generate three-dimensional random volumes,
where each configuration consists of triangles glued together along multiple
hinges. The models have matrices as the dynamical variables and are
characterized by semisimple associative algebras A. Although most of the
diagrams represent configurations which are not manifolds, we show that the set
of possible diagrams can be drastically reduced such that only (and all of the)
three-dimensional manifolds with tetrahedral decompositions appear, by
introducing a color structure and taking an appropriate large N limit. We
examine the analytic properties when A is a matrix ring or a group ring, and
show that the models with matrix ring have a novel strong-weak duality which
interchanges the roles of triangles and hinges. We also give a brief comment on
the relationship of our models with the colored tensor models.Comment: 33 pages, 31 figures. Typos correcte
Unidentified Infrared Emission Bands in the Diffuse Interstellar Medium
Using the Mid-Infrared Spectrometer on board the Infrared Telescope in Space
and the low-resolution grating spectrometer (PHT-S) on board the Infrared Space
Observatory, we obtained 820 mid-infrared (5 to 12 m) spectra of the
diffuse interstellar medium (DIM) in the Galactic center, W51, and Carina
Nebula regions. These spectra indicate that the emission is dominated by the
unidentified infrared (UIR) emission bands at 6.2, 7.7, 8.6, and 11.2 m.
The relative band intensities (6.2/7.7 m, 8.6/7.7 m, and 11.2/7.7
m) were derived from these spectra, and no systematic variation in these
ratios was found in our observed regions, in spite of the fact that the
incident radiation intensity differs by a factor of 1500. Comparing our results
with the polycyclic aromatic hydrocarbons (PAHs) model for the UIR band
carriers, PAHs in the DIM have no systematic variation in their size
distribution, their degree of dehydrogenation is independent of the strength of
UV radiation field, and they are mostly ionized. The latter finding is
incompatible with past theoretical studies, in which a large fraction of
neutral PAHs is predicted in this kind of environment. A plausible resolution
of this discrepancy is that the recombination coefficients for electron and
large PAH positive ion are by at least an order of magnitude less than those
adopted in past theoretical studies. Because of the very low population of
neutral state molecules, photoelectric emission from interstellar PAHs is
probably not the dominant source of heating of the diffuse interstellar gas.
The present results imply constant physical and chemical properties of the
carriers of the UIR emission bands in the DIM.Comment: 13 pages, 6 figures. Accepted for publication in Ap
Ultracarbonaceous Antarctic micrometeorites recovered from snow at the Dome C - CONCORDIA station.
第6回極域科学シンポジウム[OA] 南極隕石11月17日(火) 国立国語研究所 2階 講
Water and methanol in low-mass protostellar outflows: gas-phase synthesis, ice sputtering and destruction
Water in outflows from protostars originates either as a result of gas-phase synthesis from atomic oxygen at T ≳ 200 K, or from sputtered ice mantles containing water ice. We aim to quantify the contribution of the two mechanisms that lead to water in outflows, by comparing observations of gas-phase water to methanol (a grain surface product) towards three low-mass protostars in NGC 1333. In doing so, we also quantify the amount of methanol destroyed in outflows. To do this, we make use of James Clerk Maxwell Telescope and Herschel-Heterodyne Instrument for the Far-Infrared data of H2O, CH3OH and CO emission lines and compare them to RADEX non-local thermodynamic equilibrium excitation simulations. We find up to one order of magnitude decrease in the column density ratio of CH3OH over H2O as the velocity increases in the line wings up to ∼15 km s−1. An independent decrease in X(CH3OH) with respect to CO of up to one order of magnitude is also found in these objects. We conclude that gas-phase formation of H2O must be active at high velocities (above 10 km s−1 relative to the source velocity) to re-form the water destroyed during sputtering. In addition, the transition from sputtered water at low velocities to form water at high velocities must be gradual. We place an upper limit of two orders of magnitude on the destruction of methanol by sputtering effects
Photoelectric Emission from Interstellar Dust: Grain Charging and Gas Heating
We model the photoelectric emission from and charging of interstellar dust
and obtain photoelectric gas heating efficiencies as a function of grain size
and the relevant ambient conditions. Using realistic grain size distributions,
we evaluate the net gas heating rate for various interstellar environments, and
find less heating for dense regions characterized by R_V=5.5 than for diffuse
regions with R_V=3.1. We provide fitting functions which reproduce our
numerical results for photoelectric heating and recombination cooling for a
wide range of interstellar conditions. In a separate paper we will examine the
implications of these results for the thermal structure of the interstellar
medium. Finally, we investigate the potential importance of photoelectric
heating in H II regions, including the warm ionized medium. We find that
photoelectric heating could be comparable to or exceed heating due to
photoionization of H for high ratios of the radiation intensity to the gas
density. We also find that photoelectric heating by dust can account for the
observed variation of temperature with distance from the galactic midplane in
the warm ionized medium.Comment: 50 pages, including 18 figures; corrected title and abstract field
- …