88 research outputs found

    Texture-modifying properties of microbial transglutaminase on 2 popular Hungarian products: Trappist cheese and frankfurter

    Get PDF
    The aim of this study was to show how microbial transglutaminase (mTG) can be used as an effective texture-modifier for two popular Hungarian products: Trappist cheese and frankfurter. In both cases we investigated how components of these products, milkfat in cheese and phosphate in frankfurter, can be substituted by mTG. Therefore, Trappist cheese samples were produced from cow milk of 2.8%, 3.5%, and 5% milk fat. The effect of ripening was evaluated with Texture Profile Analysis (TPA) and sensory evaluation (scoring test, 10 trained panellists). Springiness and cohesiveness values were significantly higher by enzyme-treated semi-hard cheese samples at lower milk fat levels. Sensory evaluation showed that the enzyme-treatment led to higher scores by cheese samples made from cow milk of 3.5% and 5% milk fat. Frankfurter was made with 0.1%, 0.3%, 0.5%, and 0.7% tetrasodium pyrophosphate, and partly enzyme-treated with 0.2% commercial mTG enzyme preparation. Our results showed that mTG is able to significantly improve hardness and crunchiness by frankfurters made with 0.1% phosphate addition. Our sensory evaluation suggests that mTG and phosphate should be applied in combination in order to have a final product with recognisably more homogeneous texture

    The Zinc Finger Protein A20 Inhibits TNF-induced NF-κB–dependent Gene Expression by Interfering with an RIP- or TRAF2-mediated Transactivation Signal and Directly Binds to a Novel NF-κB–inhibiting Protein ABIN

    Get PDF
    The zinc finger protein A20 is a tumor necrosis factor (TNF)– and interleukin 1 (IL-1)-inducible protein that negatively regulates nuclear factor-kappa B (NF-κB)–dependent gene expression. However, the molecular mechanism by which A20 exerts this effect is still unclear. We show that A20 does not inhibit TNF- induced nuclear translocation and DNA binding of NF-κB, although it completely prevents the TNF- induced activation of an NF-κB–dependent reporter gene, as well as TNF-induced IL-6 and granulocyte macrophage–colony stimulating factor gene expression. Moreover, NF-κB activation induced by overexpression of the TNF receptor–associated proteins TNF receptor–associated death domain protein (TRADD), receptor interacting protein (RIP), and TNF recep- tor–associated factor 2 (TRAF2) was also inhibited by expression of A20, whereas NF-κB activation induced by overexpression of NF-κB–inducing kinase (NIK) or the human T cell leukemia virus type 1 (HTLV-1) Tax was unaffected. These results demonstrate that A20 inhibits NF-κB–dependent gene expression by interfering with a novel TNF-induced and RIP- or TRAF2-mediated pathway that is different from the NIK–IκB kinase pathway and that is specifically involved in the transactivation of NF-κB. Via yeast two-hybrid screening, we found that A20 binds to a novel protein, ABIN, which mimics the NF-κB inhibiting effects of A20 upon overexpression, suggesting that the effect of A20 is mediated by its interaction with this NF-κB inhibiting protein, ABIN

    Cthrc1 Is a Positive Regulator of Osteoblastic Bone Formation

    Get PDF
    Bone mass is maintained by continuous remodeling through repeated cycles of bone resorption by osteoclasts and bone formation by osteoblasts. This remodeling process is regulated by many systemic and local factors.We identified collagen triple helix repeat containing-1 (Cthrc1) as a downstream target of bone morphogenetic protein-2 (BMP2) in osteochondroprogenitor-like cells by PCR-based suppression subtractive hybridization followed by differential hybridization, and found that Cthrc1 was expressed in bone tissues in vivo. To investigate the role of Cthrc1 in bone, we generated Cthrc1-null mice and transgenic mice which overexpress Cthrc1 in osteoblasts (Cthrc1 transgenic mice). Microcomputed tomography (micro-CT) and bone histomorphometry analyses showed that Cthrc1-null mice displayed low bone mass as a result of decreased osteoblastic bone formation, whereas Cthrc1 transgenic mice displayed high bone mass by increase in osteoblastic bone formation. Osteoblast number was decreased in Cthrc1-null mice, and increased in Cthrc1 transgenic mice, respectively, while osteoclast number had no change in both mutant mice. In vitro, colony-forming unit (CFU) assays in bone marrow cells harvested from Cthrc1-null mice or Cthrc1 transgenic mice revealed that Cthrc1 stimulated differentiation and mineralization of osteoprogenitor cells. Expression levels of osteoblast specific genes, ALP, Col1a1, and Osteocalcin, in primary osteoblasts were decreased in Cthrc1-null mice and increased in Cthrc1 transgenic mice, respectively. Furthermore, BrdU incorporation assays showed that Cthrc1 accelerated osteoblast proliferation in vitro and in vivo. In addition, overexpression of Cthrc1 in the transgenic mice attenuated ovariectomy-induced bone loss.Our results indicate that Cthrc1 increases bone mass as a positive regulator of osteoblastic bone formation and offers an anabolic approach for the treatment of osteoporosis

    Deletion of TAK1 in the myeloid lineage results in the spontaneous development of myelomonocytic leukemia in mice

    Get PDF
    Previous studies of the conditional ablation of TGF-β activated kinase 1 (TAK1) in mice indicate that TAK1 has an obligatory role in the survival and/or development of hematopoietic stem cells, B cells, T cells, hepatocytes, intestinal epithelial cells, keratinocytes, and various tissues, primarily because of these cells’ increased apoptotic sensitivity, and have implicated TAK1 as a critical regulator of the NF-κB and stress kinase pathways and thus a key intermediary in cellular survival. Contrary to this understanding of TAK1’s role, we report a mouse model in which TAK1 deletion in the myeloid compartment that evoked a clonal myelomonocytic cell expansion, splenomegaly, multi-organ infiltration, genomic instability, and aggressive, fatal myelomonocytic leukemia. Unlike in previous reports, simultaneous deletion of TNF receptor 1 (TNFR1) failed to rescue this severe phenotype. We found that the features of the disease in our mouse model resemble those of human chronic myelomonocytic leukemia (CMML) in its transformation to acute myeloid leukemia (AML). Consequently, we found TAK1 deletion in 13 of 30 AML patients (43%), thus providing direct genetic evidence of TAK1’s role in leukemogenesis

    Pubertal high fat diet: effects on mammary cancer development

    Get PDF
    INTRODUCTION: Epidemiological studies linking dietary fat intake and obesity to breast cancer risk have produced inconsistent results. This may be due to the difficulty of dissociating fat intake from obesity, and/or the lack of defined periods of exposure in these studies. The pubertal mammary gland is highly sensitive to cancer-causing agents. We assessed how high fat diet (HFD) affects inflammation, proliferative, and developmental events in the pubertal gland, since dysregulation of these can promote mammary tumorigenesis. To test the effect of HFD initiated during puberty on tumorigenesis, we utilized BALB/c mice, for which HFD neither induces obesity nor metabolic syndrome, allowing dissociation of HFD effects from other conditions associated with HFD. METHODS: Pubertal BALB/c mice were fed a low fat diet (12% kcal fat) or a HFD (60% kcal fat), and subjected to carcinogen 7,12-dimethylbenz[a]anthracene (DMBA)-induced tumorigenesis. RESULTS: HFD elevated mammary gland expression of inflammatory and growth factor genes at 3 and 4 weeks of diet. Receptor activator of nuclear factor kappa-B ligand (RANKL), robustly induced at 4 weeks, has direct mitogenic activity in mammary epithelial cells and, as a potent inducer of NF-κB activity, may induce inflammatory genes. Three weeks of HFD induced a transient influx of eosinophils into the mammary gland, consistent with elevated inflammatory factors. At 10 weeks, prior to the appearance of palpable tumors, there were increased numbers of abnormal mammary epithelial lesions, enhanced cellular proliferation, increased growth factors, chemokines associated with immune-suppressive regulatory T cells, increased vascularization, and elevated M2 macrophages. HFD dramatically reduced tumor latency. Early developing tumors were more proliferative and were associated with increased levels of tumor-related growth factors, including increased plasma levels of HGF in tumor-bearing animals. Early HFD tumors also had increased vascularization, and more intra-tumor and stromal M2 macrophages. CONCLUSIONS: Taken together in this non-obesogenic context, HFD promotion of inflammatory processes, as well as local and systemically increased growth factor expression, are likely responsible for the enhanced tumorigenesis. It is noteworthy that although DMBA mutagenesis is virtually random in its targeting of genes in tumorigenesis, the short latency tumors arising in animals on HFD showed a unique gene expression profile, highlighting the potent overarching influence of HFD
    corecore