13 research outputs found

    Ultrastructure of Nuclear Condensation and Localization of DNA and Proteins in Spermatozoa of a Dasyurid Marsupial, Sminthopsis crassicaudata

    No full text
    In the dasyurid marsupial, Sminthopsis crassicaudata, the mature spermatozoon has an inner homogeneous (C1) and a peripheral indented (C2) region. Using DNase-gold conjugates, and biotinylated genomic DNA probes, DNA was found to occur in both C1 and C2 regions. The morphogenesis of the spermatozoon nucleus was investigated using ultrastructural and cytochemical studies. Spermiogenesis was divided into 15 steps. By step 10, condensation of the C1 region was complete, and at the caudal extremity of the spermatid nucleus, the nuclear envelope enclosed an electron-lucent space. This space and the surrounding nuclear envelope became very enlarged at step 11. At this stage, a plate of approximately 70 nm in thickness was present along the caudal segment of the C1 region; this "nuclear mantle" did not bind DNase-gold conjugates but stained for lysine-rich proteins using alcoholic phosphotungstic acid. Chromatin condensation resumed at step 12 with the appearance of spherical chromatin structures peripheral to the C1 chromatin. These structures then partially coalesced and the indentations of the C2 region were observed. The expanded nuclear envelope at the caudal extremity persisted in caput epididymal spermatozoa. Spherical inclusions within it did not bind to DNase-gold conjugates but stained for lysine-rich proteins. As the sperm traveled down the epididymis, these inclusions amassed near the nuclear pores and were then removed from the nucleus. In addition, the nuclear mantle was found to have disappeared by the time the spermatozoa reached the corpus epididymidis

    Two-Phase Exhumation of the Santa Rosa Mountains: Low- and High-Angle Normal Faulting During Initiation and Evolution of the Southern San Andreas Fault System

    No full text
    ©2017. American Geophysical Union. All Rights Reserved. Low-angle detachment fault systems are important elements of oblique-divergent plate boundaries, yet the role detachment faulting plays in the development of such boundaries is poorly understood. The West Salton Detachment Fault (WSDF) is a major low-angle normal fault that formed coeval with localization of the Pacific-North America plate boundary in the northern Salton Trough, CA. Apatite U-Th/He thermochronometry (AHe; n = 29 samples) and thermal history modeling of samples from the Santa Rosa Mountains (SRM) reveal that initial exhumation along the WSDF began at circa 8 Ma, exhuming footwall material from depths of \u3e2 to 3 km. An uplifted fossil (Miocene) helium partial retention zone is present in the eastern SRM, while a deeper crustal section has been exhumed along the Pleistocene high-angle Santa Rosa Fault (SFR) to much higher elevations in the southwest SRM. Detachment-related vertical exhumation rates in the SRM were ~0.15–0.36 km/Myr, with maximum fault slip rates of ~1.2–3.0 km/Myr. Miocene AHe isochrons across the SRM are consistent with northeast crustal tilting of the SRM block and suggest that the post-WSDF vertical exhumation rate along the SRF was ~1.3 km/Myr. The timing of extension initiation in the Salton Trough suggests that clockwise rotation of relative plate motions that began at 8 Ma is associated with initiation of the southern San Andreas system. Pleistocene regional tectonic reorganization was contemporaneous with an abrupt transition from low- to high-angle faulting and indicates that local fault geometry may at times exert a fundamental control on rock uplift rates along strike-slip fault systems
    corecore