28 research outputs found

    Severe teratozoospermia and its influence on pronuclear morphology, embryonic cleavage and compaction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fertilization, cell division and embryo development depend on genomic contributions from male and female gametes. We hypothesize that teratozoospermic sperm influences early embryo development and embryo compaction.</p> <p>Methods</p> <p>We conducted a retrospective analysis of embryos derived from intracytoplasmic sperm injection (ICSI) cycles. Two hundred thirty-five consecutive ICSI cycles were included in the study; all treatment was provided at the Cleveland Clinic Fertility Center. Patient cycles were divided by sperm morphology based on Kruger's strict criteria: Group A, embryos where teratozoospermic sperm (0-2% normal) were used for ICSI and Group B, embryos where dysmorphic sperm (5-13% normal) were used for ICSI. All cycles analyzed were of patients doing day 3 embryo transfers. Outcome measures assessed included pronuclear (PN) pattern, syngamy, early cleavage, cell number, rate of compaction and blastulation of embryos left in culture and not transferred on day 3.</p> <p>Results</p> <p>A total of 1762 embryos were analyzed. PN patterns were similar in Group A and Group B embryos. No differences were noted in syngamy, cleavage, cell number or blastulation rate. Studying the development of embryos in culture after day 3 transfer revealed a difference in the timeline for compaction. By day 4, 25% of Group A embryos had compacted compared to 36% in Group B (P = 0.0007). There was no difference found between Group A and Group B embryos in regards to blastulation.</p> <p>Conclusions</p> <p>We did not find an association between sperm morphology and clinical outcomes. The impact of teratozoospermia may be masked in ICSI cycles where fertilization, implantation rate and clinical pregnancy rate are the primary outcome measures. However, by examining the timeline of development, we were better able to discern a potential paternal effect at critical transition points from fertilization through activation.</p

    Expression of a Dominant Negative CELF Protein In Vivo Leads to Altered Muscle Organization, Fiber Size, and Subtype

    Get PDF
    CUG-BP and ETR-3-like factor (CELF) proteins regulate tissue- and developmental stage-specific alternative splicing in striated muscle. We previously demonstrated that heart muscle-specific expression of a nuclear dominant negative CELF protein in transgenic mice (MHC-CELFΔ) effectively disrupts endogenous CELF activity in the heart in vivo, resulting in impaired cardiac function. In this study, transgenic mice that express the dominant negative protein under a skeletal muscle-specific promoter (Myo-CELFΔ) were generated to investigate the role of CELF-mediated alternative splicing programs in normal skeletal muscle.Myo-CELFΔ mice exhibit modest changes in CELF-mediated alternative splicing in skeletal muscle, accompanied by a reduction of endomysial and perimysial spaces, an increase in fiber size variability, and an increase in slow twitch muscle fibers. Weight gain and mean body weight, total number of muscle fibers, and overall muscle strength were not affected.Although these findings demonstrate that CELF activity contributes to the normal alternative splicing of a subset of muscle transcripts in vivo, the mildness of the effects in Myo-CELFΔ muscles compared to those in MHC-CELFΔ hearts suggests CELF activity may be less determinative for alternative splicing in skeletal muscle than in heart muscle. Nonetheless, even these small changes in CELF-mediated splicing regulation were sufficient to alter muscle organization and muscle fiber properties affected in myotonic dystrophy. This lends further evidence to the hypothesis that dysregulation of CELF-mediated alternative splicing programs may be responsible for the disruption of these properties during muscle pathogenesis

    Limb Spicules from the Ground and from Space

    Get PDF
    We amassed statistics for quiet-sun chromosphere spicules at the limb using ground-based observations from the Swedish 1-m Solar Telescope on La Palma and simultaneously from NASA's Transition Region and Coronal Explorer (TRACE) spacecraft. The observations were obtained in July 2006. With the 0.2 arcsecond resolution obtained after maximizing the ground-based resolution with the Multi-Object Multi-Frame Blind Deconvolution (MOMFBD) program, we obtained specific statistics for sizes and motions of over two dozen individual spicules, based on movies compiled at 50-second cadence for the series of five wavelengths observed in a very narrow band at H-alpha, on-band and in the red and blue wings at 0.035 nm and 0.070 nm (10 s at each wavelength) using the SOUP filter, and had simultaneous observations in the 160 nm EUV continuum from TRACE. The MOMFBD restoration also automatically aligned the images, facilitating the making of Dopplergrams at each off-band pair. We studied 40 H-alpha spicules, and 14 EUV spicules that overlapped H-alpha spicules; we found that their dynamical and morphological properties fit into the framework of several previous studies. From a preliminary comparison with spicule theories, our observations are consistent with a reconnection mechanism for spicule generation, and with UV spicules being a sheath region surrounding the H-alpha spicules

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond

    Get PDF

    RNA-seq

    No full text
    corecore