11 research outputs found

    Évaluation de l'unicité écologique à grande étendue spatiale à l'aide de modèles de répartition d'espèces

    Full text link
    La diversité bêta est une mesure essentielle pour décrire l'organisation de la biodiversité dans l'espace. Le calcul des contributions locales à la diversité bêta (LCBD), en particulier, permet d'identifier des sites à forte unicité écologique montrant une diversité exceptionnelle au sein d'une région d'intérêt. Jusqu’à présent, l'utilisation des LCBD s'est restreinte à des échelles locales ou régionales avec un petit nombre de sites. Dans ce mémoire, j'ai examiné si les modèles de répartition d'espèces (SDM) permettent d'évaluer l'unicité écologique sur de plus grandes étendues spatiales. J'ai également étudié l’effet des changements d’échelle sur la quantification de la diversité bêta. Pour ce faire, j'ai utilisé la base de données eBird et des arbres de régression additifs bayésiens pour prédire la répartition des parulines en Amérique du Nord. J'ai ensuite calculé les LCBD sur ces prédictions, ce qui permet de couvrir de plus grandes étendues spatiales et un nombre de sites plus élevé. Mes résultats ont montré que les SDM fournissent des estimations d'unicité fortement corrélées avec les données observées et montrant une association spatiale statistiquement significative. Ils ont également montré que la relation entre la richesse et les LCBD varie selon la région et l'étendue spatiale et qu'elle est influencée par la proportion d'espèces rares dans les communautés. Ainsi, les sites identifiés comme uniques peuvent varier selon les caractéristiques de la région étudiée. Ces résultats montrent que les SDM peuvent être utilisés pour prédire l'unicité écologique, ce qui pourrait permettre d'identifier d'importantes cibles de conservation au sein de régions non échantillonnées.Beta diversity is an essential measure to describe the organization of biodiversity through space. The calculation of local contributions to beta diversity (LCBD), specifically, allows the identification of sites with high ecological uniqueness and exceptional diversity within a region of interest. To this day, LCBD indices have primarily been used on regional and smaller scales, with relatively few sites. Furthermore, their use is typically restricted to strictly sampled sites with known species composition, leading to gaps in spatial coverage on broad extents. Here, I examined whether species distribution models (SDMs) can be used to assess ecological uniqueness over broader spatial extents and investigated the effect of scale changes on beta diversity quantification. To this aim, I used observations recorded in the eBird database and Bayesian additive regression trees to model warbler species composition in North America, then computed LCBD indices on the predictions, thus covering a broader spatial extent and a higher number of sites. My results showed that SDMs provide uniqueness estimates highly correlated with observed data with a statistically significant spatial association. They also showed that the relationship between richness and LCBD values varies according to the region and the spatial extent and that it is affected by the proportion of rare species in communities. Sites identified as unique may therefore vary according to regional characteristics. These results show that SDMs can be used to predict ecological uniqueness over broad spatial extents, which could help identify beta diversity hotspots and important targets for conservation purposes in unsampled locations

    Mismatch between IUCN range maps and species interactions data illustrated using the Serengeti food web

    Get PDF
    Background Range maps are a useful tool to describe the spatial distribution of species. However, they need to be used with caution, as they essentially represent a rough approximation of a species’ suitable habitats. When stacked together, the resulting communities in each grid cell may not always be realistic, especially when species interactions are taken into account. Here we show the extent of the mismatch between range maps, provided by the International Union for Conservation of Nature (IUCN), and species interactions data. More precisely, we show that local networks built from those stacked range maps often yield unrealistic communities, where species of higher trophic levels are completely disconnected from primary producers. Methodology We used the well-described Serengeti food web of mammals and plants as our case study, and identify areas of data mismatch within predators’ range maps by taking into account food web structure. We then used occurrence data from the Global Biodiversity Information Facility (GBIF) to investigate where data is most lacking. Results We found that most predator ranges comprised large areas without any overlapping distribution of their prey. However, many of these areas contained GBIF occurrences of the predator. Conclusions Our results suggest that the mismatch between both data sources could be due either to the lack of information about ecological interactions or the geographical occurrence of prey. We finally discuss general guidelines to help identify defective data among distributions and interactions data, and we recommend this method as a valuable way to assess whether the occurrence data that are being used, even if incomplete, are ecologically accurate

    Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013

    Get PDF
    BACKGROUND: The Millennium Declaration in 2000 brought special global attention to HIV, tuberculosis, and malaria through the formulation of Millennium Development Goal (MDG) 6. The Global Burden of Disease 2013 study provides a consistent and comprehensive approach to disease estimation for between 1990 and 2013, and an opportunity to assess whether accelerated progress has occured since the Millennium Declaration. METHODS: To estimate incidence and mortality for HIV, we used the UNAIDS Spectrum model appropriately modified based on a systematic review of available studies of mortality with and without antiretroviral therapy (ART). For concentrated epidemics, we calibrated Spectrum models to fit vital registration data corrected for misclassification of HIV deaths. In generalised epidemics, we minimised a loss function to select epidemic curves most consistent with prevalence data and demographic data for all-cause mortality. We analysed counterfactual scenarios for HIV to assess years of life saved through prevention of mother-to-child transmission (PMTCT) and ART. For tuberculosis, we analysed vital registration and verbal autopsy data to estimate mortality using cause of death ensemble modelling. We analysed data for corrected case-notifications, expert opinions on the case-detection rate, prevalence surveys, and estimated cause-specific mortality using Bayesian meta-regression to generate consistent trends in all parameters. We analysed malaria mortality and incidence using an updated cause of death database, a systematic analysis of verbal autopsy validation studies for malaria, and recent studies (2010-13) of incidence, drug resistance, and coverage of insecticide-treated bednets. FINDINGS: Globally in 2013, there were 1·8 million new HIV infections (95% uncertainty interval 1·7 million to 2·1 million), 29·2 million prevalent HIV cases (28·1 to 31·7), and 1·3 million HIV deaths (1·3 to 1·5). At the peak of the epidemic in 2005, HIV caused 1·7 million deaths (1·6 million to 1·9 million). Concentrated epidemics in Latin America and eastern Europe are substantially smaller than previously estimated. Through interventions including PMTCT and ART, 19·1 million life-years (16·6 million to 21·5 million) have been saved, 70·3% (65·4 to 76·1) in developing countries. From 2000 to 2011, the ratio of development assistance for health for HIV to years of life saved through intervention was US$4498 in developing countries. Including in HIV-positive individuals, all-form tuberculosis incidence was 7·5 million (7·4 million to 7·7 million), prevalence was 11·9 million (11·6 million to 12·2 million), and number of deaths was 1·4 million (1·3 million to 1·5 million) in 2013. In the same year and in only individuals who were HIV-negative, all-form tuberculosis incidence was 7·1 million (6·9 million to 7·3 million), prevalence was 11·2 million (10·8 million to 11·6 million), and number of deaths was 1·3 million (1·2 million to 1·4 million). Annualised rates of change (ARC) for incidence, prevalence, and death became negative after 2000. Tuberculosis in HIV-negative individuals disproportionately occurs in men and boys (versus women and girls); 64·0% of cases (63·6 to 64·3) and 64·7% of deaths (60·8 to 70·3). Globally, malaria cases and deaths grew rapidly from 1990 reaching a peak of 232 million cases (143 million to 387 million) in 2003 and 1·2 million deaths (1·1 million to 1·4 million) in 2004. Since 2004, child deaths from malaria in sub-Saharan Africa have decreased by 31·5% (15·7 to 44·1). Outside of Africa, malaria mortality has been steadily decreasing since 1990. INTERPRETATION: Our estimates of the number of people living with HIV are 18·7% smaller than UNAIDS's estimates in 2012. The number of people living with malaria is larger than estimated by WHO. The number of people living with HIV, tuberculosis, or malaria have all decreased since 2000. At the global level, upward trends for malaria and HIV deaths have been reversed and declines in tuberculosis deaths have accelerated. 101 countries (74 of which are developing) still have increasing HIV incidence. Substantial progress since the Millennium Declaration is an encouraging sign of the effect of global action. FUNDING: Bill & Melinda Gates Foundation

    Conservation of physiological dysregulation signatures of aging across primates

    No full text
    International audienceTwo major goals in the current biology of aging are to identify general mechanisms underlying the aging process and to explain species differences in aging. Recent research in humans suggests that one important driver of aging is dysregulation, the progressive loss of homeostasis in complex biological networks. Yet, there is a lack of comparative data for this hypothesis, and we do not know whether dysregulation is widely associated with aging or how well signals of homeostasis are conserved. To address this knowledge gap, we use unusually detailed longitudinal biomarker data from 10 species of nonhuman primates housed in research centers and data from two human populations to test the hypotheses that (a) greater dysregulation is associated with aging across primates and (b) physiological states characterizing homeostasis are conserved across primates to degrees associated with phylogenetic proximity. To evaluate dysregulation, we employed a multivariate distance measure, calculated from sets of biomarkers, that is associated with aging and mortality in human populations. Dysregulation scores positively correlated with age and risk of mortality in most nonhuman primates studied, and signals of homeostatic state were significantly conserved across species, declining with phylogenetic distance. Our study provides the first broad demonstration of physiological dysregulation associated with aging and mortality risk in multiple nonhuman primates. Our results also imply that emergent signals of homeostasis are evolutionarily conserved, although with notable variation among species, and suggest promising directions for future comparative studies on dysregulation and the aging process

    Bases para o estudo dos ecossistemas da Amazônia brasileira

    Get PDF
    corecore