60 research outputs found

    Ecological succession of a Jurassic shallow-water ichthyosaur fall.

    Get PDF
    After the discovery of whale fall communities in modern oceans, it has been hypothesized that during the Mesozoic the carcasses of marine reptiles created similar habitats supporting long-lived and specialized animal communities. Here, we report a fully documented ichthyosaur fall community, from a Late Jurassic shelf setting, and reconstruct the ecological succession of its micro- and macrofauna. The early 'mobile-scavenger' and 'enrichment-opportunist' stages were not succeeded by a 'sulphophilic stage' characterized by chemosynthetic molluscs, but instead the bones were colonized by microbial mats that attracted echinoids and other mat-grazing invertebrates. Abundant cemented suspension feeders indicate a well-developed 'reef stage' with prolonged exposure and colonization of the bones prior to final burial, unlike in modern whale falls where organisms such as the ubiquitous bone-eating worm Osedax rapidly destroy the skeleton. Shallow-water ichthyosaur falls thus fulfilled similar ecological roles to shallow whale falls, and did not support specialized chemosynthetic communities

    Effects of different doses of erythropoietin in patients with myelodysplastic syndromes: A propensity score-matched analysis

    Get PDF
    Erythropoiesis-stimulating agents effectively improve the hemoglobin levels in a fraction of anemic patients with myelodysplastic syndromes (MDS). Higher doses (HD) of recombinant human erythropoietin (rhEPO) have been proposed to overcome suboptimal response rates observed in MDS patients treated with lower "standard doses" (SD) of rhEPO. However, a direct comparison between the different doses of rhEPO is lacking

    Population response during an Oceanic Anoxic Event: The case of Posidonotis (Bivalvia) from the Lower Jurassic of the Neuquén Basin, Argentina

    Get PDF
    Benthonic marine species show a wide range of biological reactions to seawater chemical changes through time, from subtle adjustments to extinction. The Early Toarcian Oceanic Anoxic Event (T-OAE) was recently recognized in the Neuquén Basin, Argentina, confirming its global scope. The event was identified chemostratigraphically on the basis of a relative increase in marine organic carbon and a characteristic negative carbonisotope excursion (δ13Corg) in bulk rock and fossil wood in the upper Pliensbachian-lower Toarcian interval in the Arroyo Lapa section (Neuquén). Simultaneously with collection of lithological samples, a high-resolution biostratigraphical survey was carried out, and the scarce benthonic fauna was collected in order to check the biotic response to changing marine geochemical conditions. We present here an analysis of size and abundance data from the T-OAE interval in the Neuquén Basin for the dominant bivalve species, the paper-clam Posidonotis cancellata (Leanza), and relate these data to geochemical proxies (%TOC and δ13Corg) obtained at the same locality. The abundance of P. cancellata increased when the rest of the benthos diminished, reaching a maximum at the onset level of the T-OAE, and then decreasing. Size-frequency distributions show a noteworthy lack of juvenile shells. Shell size shows a positive correlation with %TOC in the whole section, though over the T-OAE interval proper, it decreases below the level where the maximum %TOC value is attained and increases above it. Posidonotis cancellata shows features of opportunistic species, such as high tolerance to hypoxia, strong dominance in impoverished environments and a strong dependence on primary productivity, but at the same time had a reproductive strategy more similar to equilibrium species, with relatively low juvenile mortality rates. Several anatomical features suggest adaptation to permanently dysaerobic environments. The species disappeared just before the minimum negative carbon-isotope value was reached; and by the same time the genus became extinct worldwide

    Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK)

    Get PDF
    The late Early Jurassic Toarcian Stage represents the warmest interval of the Jurassic Period, with an abrupt rise in global temperatures of up to ∼7 °C in mid-latitudes at the onset of the early Toarcian Oceanic Anoxic Event (T-OAE; ∼183 Ma). The T-OAE, which has been extensively studied in marine and continental successions from both hemispheres, was marked by the widespread expansion of anoxic and euxinic waters, geographically extensive deposition of organic-rich black shales, and climatic and environmental perturbations. Climatic and environmental processes following the T-OAE are, however, poorly known, largely due to a lack of study of stratigraphically well-constrained and complete sedimentary archives. Here, we present integrated geochemical and physical proxy data (high-resolution carbon-isotope data (δ13C), bulk and molecular organic geochemistry, inorganic petrology, mineral characterisation, and major- and trace-element concentrations) from the biostratigraphically complete and expanded entire Toarcian succession in the Llanbedr (Mochras Farm) Borehole, Cardigan Bay Basin, Wales, UK. With these data, we (1) construct the first high-resolution biostratigraphically calibrated chemostratigraphic reference record for nearly the complete Toarcian Stage, (2) establish palaeoceanographic and depositional conditions in the Cardigan Bay Basin, (3) show that the T-OAE in the hemipelagic Cardigan Bay Basin was marked by the occurrence of gravity-flow deposits that were likely linked to globally enhanced sediment fluxes to continental margins and deeper marine (shelf) basins, and (4) explore how early Toarcian (tenuicostatum and serpentinum zones) siderite formation in the Cardigan Bay Basin may have been linked to low global oceanic sulphate concentrations and elevated supply of iron (Fe) from the hinterland, in response to climatically induced changes in hydrological cycling, global weathering rates and large-scale sulphide and evaporite deposition
    corecore