66 research outputs found

    Local regeneration in the retina of the goldfish

    Full text link
    We have studied regeneration of the retina in the goldfish as a model of regenerative neurogenesis in the central nervous system. Using a transsclearal surgical approach, we excised small patches of retina that were replaced over several weeks by regeneration. Lesioned retinas from three groups of animals were studied to characterize, respectively, the qualitative changes of the retina and surrounding tissues during regeneration, the concomitant cellular proliferation, and the quantitative relationship between regenerated and intact retina. The qualitative and quantitative analyses were done on retinas prepared using standard methods for light microscopy. The planimetric density of regenerated and intact retinal neurons was computed in a group of animals in which the normal planimetric density ranged from high to low. Cell proliferation was investigated by making intraocular injections of 5-bromo-2′-deoxyuridine (BUdr) at various survival times to label proliferating cells and processing retinal sections for BUdr immunocytochemistry. The qualitative analysis showed that the surgery created a gap in the existing retina that was replaced with new retina over the subsequent weeks. The BUdr-labeling experiments demonstrated that the excised retina was replaced by regeneration of new neurons. Neuroepithiallike cells clustered on the wound margin and migrated centripetally, appositionally adding new retina to the old. The quantitative analysis showed that the planimetric density of the regenerated neurons approximated that of the intact ones.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50080/1/480230209_ftp.pd

    Analysis of Prototype Foamy Virus particle-host cell interaction with autofluorescent retroviral particles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The foamy virus (FV) replication cycle displays several unique features, which set them apart from orthoretroviruses. First, like other B/D type orthoretroviruses, FV capsids preassemble at the centrosome, but more similar to hepadnaviruses, FV budding is strictly dependent on cognate viral glycoprotein coexpression. Second, the unusually broad host range of FV is thought to be due to use of a very common entry receptor present on host cell plasma membranes, because all cell lines tested in vitro so far are permissive.</p> <p>Results</p> <p>In order to take advantage of modern fluorescent microscopy techniques to study FV replication, we have created FV Gag proteins bearing a variety of protein tags and evaluated these for their ability to support various steps of FV replication. Addition of even small N-terminal HA-tags to FV Gag severely impaired FV particle release. For example, release was completely abrogated by an N-terminal autofluorescent protein (AFP) fusion, despite apparently normal intracellular capsid assembly. In contrast, C-terminal Gag-tags had only minor effects on particle assembly, egress and particle morphogenesis. The infectivity of C-terminal capsid-tagged FV vector particles was reduced up to 100-fold in comparison to wild type; however, infectivity was rescued by coexpression of wild type Gag and assembly of mixed particles. Specific dose-dependent binding of fluorescent FV particles to target cells was demonstrated in an Env-dependent manner, but not binding to target cell-extracted- or synthetic- lipids. Screening of target cells of various origins resulted in the identification of two cell lines, a human erythroid precursor- and a zebrafish- cell line, resistant to FV Env-mediated FV- and HIV-vector transduction.</p> <p>Conclusions</p> <p>We have established functional, autofluorescent foamy viral particles as a valuable new tool to study FV - host cell interactions using modern fluorescent imaging techniques. Furthermore, we succeeded for the first time in identifying two cell lines resistant to Prototype Foamy Virus Env-mediated gene transfer. Interestingly, both cell lines still displayed FV Env-dependent attachment of fluorescent retroviral particles, implying a post-binding block potentially due to lack of putative FV entry cofactors. These cell lines might ultimately lead to the identification of the currently unknown ubiquitous cellular entry receptor(s) of FVs.</p

    PTEN Regulates PDGF Ligand Switch for β-PDGFR Signaling in Prostate Cancer

    Get PDF
    Platelet-derived growth factor (PDGF) family members are potent growth factors that regulate cell proliferation, migration, and transformation. Clinical studies have shown that both PDGF receptor β (β-PDGFR) and its ligand PDGF D are up-regulated in primary prostate cancers and bone metastases, whereas PDGF B, a classic ligand for β-PDGFR, is not frequently detected in clinical samples. In this study, we examined the role of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN) in the regulation of PDGF expression levels using both a prostate-specific, conditional PTEN-knockout mouse model and mouse prostate epithelial cell lines established from these mice. We found an increase in PDGF D and β-PDGFR expression levels in PTEN-null tumor cells, accompanied by a decrease in PDGF B expression. Among Akt isoforms, increased Akt3 expression was most prominent in mouse PTEN-null cells, and phosphatidylinositol 3-kinase/Akt activity was essential for the maintenance of increased PDGF D and β-PDGFR expression. In vitro deletion of PTEN resulted in a PDGF ligand switch from PDGF B to PDGF D in normal mouse prostate epithelial cells, further demonstrating that PTEN regulates this ligand switch. Similar associations between PTEN status and PDGF isoforms were noted in human prostate cancer cell lines. Taken together, these results suggest a mechanism by which loss of PTEN may promote prostate cancer progression via PDGF D/β-PDGFR signal transduction

    Learning on the job?: EU enlargement and the assignment of (shadow) rapporteurships in the European Parliament

    Get PDF
    This article investigates the determinants of assignments to European Parliament negotiating teams comprising both rapporteurs and shadow rapporteurs. We re-examine the argument that under-representation of MEPs (Members of the European Parliament) from new Member States on these key posts after enlargement might have been due to a 'learning phase'. We find that MEPs from newer Member States remain considerably less likely to act as rapporteurs during the second term after enlargement (2009–14). Most importantly, this trend also holds for shadow rapporteurships under the co-decision procedure, which is when they matter most. This structural under-representation entails important implications for European integration, most importantly that MEPs from newer Member States are less able to influence legislation. We suggest that the patterns we find could be the result of reduced willingness, a more limited skill set, or a structural disadvantage of MEPs from the accession states in the report allocation process

    Expression and subcellular localization of Discoidin Domain Receptor 1 (DDR1) define prostate cancer aggressiveness

    Get PDF
    Background: The Discoidin Domain Receptor 1 (DDR1) is one of the two members of a unique family of receptor tyrosine kinase receptors that signal in response to collagen, which has been implicated in cancer progression. Here, we examined the expression of DDR1 in prostate cancer (PCa), and assessed its potential value as a prognostic marker, as a function of grade, stage and other clinicopathologic parameters. Methods: We investigated the association between the expression level and subcellular localization of DDR1 protein and PCa aggressiveness by immunohistochemistry, using tissue microarrays (TMAs) encompassing 200 cases of PCa with various Gleason scores (GS) and pathologic stages with matched normal tissue, and a highly specific monoclonal antibody. Results: DDR1 was found to be localized in the membrane, cytoplasm, and nuclear compartments of both normal and cancerous prostate epithelial cells. Analyses of DDR1 expression in low GS (≤ 7[3 + 4]) vs high GS (≥ 7[4 + 3]) tissues showed no differences in nuclear or cytoplasmic DDR1in either cancerous or adjacent normal tissue cores. However, relative to normal-matched tissue, the percentage of cases with higher membranous DDR1 expression was significantly lower in high vs. low GS cancers. Although nuclear localization of DDR1 was consistently detected in our tissue samples and also in cultured human PCa and normal prostate-derived cell lines, its presence in that site could not be associated with disease aggressiveness. No associations between DDR1 expression and overall survival or biochemical recurrence were found in this cohort of patients. Conclusion: The data obtained through multivariate logistic regression model analysis suggest that the level of membranous DDR1 expression status may represent a potential biomarker of utility for better determination of PCa aggressiveness.This work was supported by the Department of Defense Prostate Cancer Research Program, DOD Award No W81XWH-15-1-0226 (to RF and RDB) and Awards No W81XWH-10-2-0056 and W81XWH-10-2-0046 Prostate Cancer Biorepository Network (PCBN)

    The Methyl-CpG Binding Proteins Mecp2, Mbd2 and Kaiso Are Dispensable for Mouse Embryogenesis, but Play a Redundant Function in Neural Differentiation

    Get PDF
    The precise molecular changes that occur when a neural stem (NS) cell switches from a programme of self-renewal to commit towards a specific lineage are not currently well understood. However it is clear that control of gene expression plays an important role in this process. DNA methylation, a mark of transcriptionally silent chromatin, has similarly been shown to play important roles in neural cell fate commitment in vivo. While DNA methylation is known to play important roles in neural specification during embryonic development, no such role has been shown for any of the methyl-CpG binding proteins (Mecps) in mice.. No evidence for functional redundancy between these genes in embryonic development or in the derivation or maintenance of neural stem cells in culture was detectable. However evidence for a defect in neuronal commitment of triple knockout NS cells was found.Although DNA methylation is indispensable for mammalian embryonic development, we show that simultaneous deficiency of three methyl-CpG binding proteins genes is compatible with apparently normal mouse embryogenesis. Nevertheless, we provide genetic evidence for redundancy of function between methyl-CpG binding proteins in postnatal mice

    DNA Methylation in the Human Cerebral Cortex Is Dynamically Regulated throughout the Life Span and Involves Differentiated Neurons

    Get PDF
    The role of DNA cytosine methylation, an epigenetic regulator of chromatin structure and function, during normal and pathological brain development and aging remains unclear. Here, we examined by MethyLight PCR the DNA methylation status at 50 loci, encompassing primarily 5′ CpG islands of genes related to CNS growth and development, in temporal neocortex of 125 subjects ranging in age from 17 weeks of gestation to 104 years old. Two psychiatric disease cohorts—defined by chronic neurodegeneration (Alzheimer's) or lack thereof (schizophrenia)—were included. A robust and progressive rise in DNA methylation levels across the lifespan was observed for 8/50 loci (GABRA2, GAD1, HOXA1, NEUROD1, NEUROD2, PGR, STK11, SYK) typically in conjunction with declining levels of the corresponding mRNAs. Another 16 loci were defined by a sharp rise in DNA methylation levels within the first few months or years after birth. Disease-associated changes were limited to 2/50 loci in the Alzheimer's cohort, which appeared to reflect an acceleration of the age-related change in normal brain. Additionally, methylation studies on sorted nuclei provided evidence for bidirectional methylation events in cortical neurons during the transition from childhood to advanced age, as reflected by significant increases at 3, and a decrease at 1 of 10 loci. Furthermore, the DNMT3a de novo DNA methyl-transferase was expressed across all ages, including a subset of neurons residing in layers III and V of the mature cortex. Therefore, DNA methylation is dynamically regulated in the human cerebral cortex throughout the lifespan, involves differentiated neurons, and affects a substantial portion of genes predominantly by an age-related increase
    • …
    corecore