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Platelet-derived growth factor (PDGF) family mem-
bers are potent growth factors that regulate cell pro-
liferation, migration, and transformation. Clinical
studies have shown that both PDGF receptor � (�-
PDGFR) and its ligand PDGF D are up-regulated in
primary prostate cancers and bone metastases,
whereas PDGF B, a classic ligand for �-PDGFR, is not
frequently detected in clinical samples. In this study,
we examined the role of the tumor suppressor phos-
phatase and tensin homologue deleted on chromo-
some 10 (PTEN) in the regulation of PDGF expression
levels using both a prostate-specific, conditional
PTEN-knockout mouse model and mouse prostate ep-
ithelial cell lines established from these mice. We
found an increase in PDGF D and �-PDGFR expres-
sion levels in PTEN-null tumor cells, accompanied by
a decrease in PDGF B expression. Among Akt iso-
forms, increased Akt3 expression was most promi-
nent in mouse PTEN-null cells, and phosphatidylino-
sitol 3-kinase/Akt activity was essential for the
maintenance of increased PDGF D and �-PDGFR ex-
pression. In vitro deletion of PTEN resulted in a PDGF
ligand switch from PDGF B to PDGF D in normal
mouse prostate epithelial cells, further demonstrating
that PTEN regulates this ligand switch. Similar associ-
ations between PTEN status and PDGF isoforms were
noted in human prostate cancer cell lines. Taken to-
gether, these results suggest a mechanism by which loss
of PTEN may promote prostate cancer progression via
PDGF D/�-PDGFR signal transduction. (Am J Pathol
2012, 180:1017–1027; DOI: 10.1016/j.ajpath.2011.11.021)
Prostate cancer (PCa) is the most diagnosed noncutane-
ous cancer of men in the United States, and the second
leading cause of death, accounting for 10% of cancer-
related mortality among men.1 Studies have suggested a
critical role for platelet-derived growth factor (PDGF) sig-
naling during PCa development and progression. The
PDGF family consists of four ligands, PDGFs A, B, C, and
D, that form homodimers or a heterodimer AB.2 Tumor-
derived PDGFs regulate diverse cellular processes, such
as cell proliferation, migration, differentiation, and pheno-
typic transformation, through activation of their cognate
receptors, � and � (�- and �-PDGFR, respectively), in-
volving both autocrine and paracrine signaling mecha-
nisms. Although �-PDGFR can be activated by PDGFs A,
B, and C, �-PDGFR is activated by PDGFs B and D.
PDGFR signaling may be of particular importance for
PCa bone metastasis, because increasing evidence sug-
gests a critical role for PDGF in bone turnover and
growth. PDGF regulates commitment of stromal mesen-
chymal cells to differentiate into osteoprogenitor cells
and induces proliferation and migration of osteoblast
cells,3–5 suggesting a role for PDGF in bone formation.
PDGF also stimulates bone resorption by increasing the
number of osteoclasts and up-regulating matrix-degrad-
ing enzyme expression.6–8 Consistently, our recent study
demonstrated that PDGF D/�-PDGFR signaling en-
hances intraosseous PCa growth and bone reactions in
an animal model.

Immunohistochemical (IHC) analysis showed that
�-PDGFR is up-regulated in most primary and metastatic
PCa cells.9 More important, expression of �-PDGFR has
been identified by microarray analyses as part of a five-
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gene model, along with chromogranin A, HOXC6, IPTR3,
and sialyltransferase-1, that predicts PCa recurrence.10

Although PDGF B, originally thought to be the sole ligand
for �-PDGFR, has not been detected in PCa tissues, our
recent IHC study showed that increased PDGF D expres-
sion is associated with both higher tumor stage and
higher Gleason score,11 identifying PDGF D as a clini-
cally relevant ligand for �-PDGFR in PCa. PDGF D in-
duces PCa cell motility in an autocrine manner, and PCa-
produced PDGF D functions as a chemoattractant for
fibroblasts through paracrine signaling.12 In an animal
model, PDGF D expression accelerated early onset of
prostate tumor growth and drastically enhanced prostate
carcinoma cell invasion and interaction with surrounding
stromal cells.12 Despite increasing evidence for PDGF D
in PCa, little is known about the molecular mechanisms
by which PDGF D expression is regulated in PCa.

In this study, we identified phosphatase and tensin
homologue deleted on chromosome 10 (PTEN, also
known as MMAC1/TEP1) as a key regulator of PDGF D
expression in PCa cells. PTEN is a nonredundant, plas-
ma-membrane lipid phosphatase that hydrolyzes the
3-phosphate on phosphatidylinositol 3,4,5-triphosphate
and, thereby, negatively regulates phosphatidylinositol
3,4,5-triphosphate–mediated signal transduction path-
ways, such as the phosphatidylinositol 3-kinase (PI3K)/
Akt pathway.13 By regulating the pathways of the serine/
threonine kinase Akt, PTEN regulates many cellular
processes, including cell cycle, cell motility/invasion, cell
adhesion, protein synthesis, and glucose metabolism.
The loss or mutation of the tumor suppressor PTEN gene
is considered one of the most common genetic abnor-
malities in PCa.14 The estimated frequency of monoal-
lelic loss or mutations at the PTEN genetic locus is 50%
to 80% in primary PCa.15,16 PTEN haploinsufficiency is
thought to be an important driving force in the early
pathogenesis of many tumors, including PCa. Evi-
dence suggests that complete loss of PTEN function at
later stages is associated with more aggressive and
metastatic tumors.14,17 In an animal model, mice with
prostate-specific heterozygous PTEN deletion developed
mouse prostate intraepithelial neoplasia lesions at 12 to
16 months, with near 100% penetrance. A prostate-spe-
cific PTEN homozygous deletion shortened latency, and
100% of the PTEN�/� mice developed mouse prostate
intraepithelial neoplasia lesions at the age of 6 weeks.
More important, the PTEN�/� mouse prostate intraepithe-
lial neoplasia lesions progressed to invasive adenocarci-
nomas by the age of 9 weeks,18 recapitulating the dis-
ease progression seen in human PCa, from hyperplasia
to prostate intraepithelial neoplasia, then to invasive ad-
enocarcinoma. Herein, we show increased PDGF D ex-
pression and �-PDGFR activation in tumor tissues from
prostate-specific PTEN�/� mice. By using cell lines es-
tablished from PTEN knockout mice, we demonstrate that
the loss of PTEN results in a ligand switch from PDGF B
to PDGF D, resulting in an expression pattern similar to
that seen in humans. In addition, we show that PI3K/Akt
activities are essential for the maintenance of increased
PDGF D expression in both mouse and human prostate

epithelial cells in the context of PTEN loss, whereas AMP-
activated protein kinase (AMPK) regulates PDGF B ex-
pression.

Materials and Methods

Cell Culture

Cell lines were cultured at 37°C in a humidified incubator
with 5% CO2, and all media were supplemented with 2
mmol/L glutamine, 100 U/mL penicillin, and 100 mg/mL
streptomycin (Life Technologies Inc., Carlsbad, CA). Hu-
man prostate carcinoma cell lines PC3 and DU145 were
verified by American Type Culture Collection (Manassas,
VA) and maintained in RPMI 1640 medium supplemented
with 5% fetal bovine serum. The mouse cell lines were
maintained in advanced Dulbecco’s modified Eagle’s
medium supplemented with 5% fetal bovine serum, 2
mmol/L glutamine, 100 U/mL penicillin, and 100 mg/mL
streptomycin.

Establishment of PTEN�/�, PTEN�/�, and
PTEN�/� Mouse Prostate Epithelial Cell Lines

Prostate-specific deletion of floxed exon 5 of PTEN was
achieved by Cre recombinase expressed under the control of
an androgen-responsive probasin promoter (PB). Mouse ge-
notypes are PTENloxP/loxPPB-cre4�/� (wild type), PTENloxP/�

PB-cre4T/� (heterozygous), and PTENloxP/loxPPB-cre4T/�

(homozygous) and referred to as PTEN�/�, PTEN�/�,
and PTEN�/�, respectively, as described.19 The
PTEN�/�, PTEN�/�, and PTEN�/� mouse prostate epi-
thelial cells were isolated from prostates of correspond-
ing mice at the age of 8 weeks using the previously
described method.20 Cell lines were established by a
serial dilution method and subsequent clonal selection,21

and the PTEN status in these cell lines was confirmed by
genotyping and immunoblot analyses.

In Vitro Deletion of PTEN in Mouse Prostate
Epithelial Cell Line

PTENloxP/loxP cells were isolated from the prostates of
8-week-old mice. In vitro deletion of PTEN was achieved
by expression of Cre recombinase by a self-deleting len-
tiviral vector (PTEN viral knockout, or PTEN-vKO). PTEN-
knockout clones (PTEN-vKO-#2 and PTEN-vKO-#3) were
then selected from the pooled population (PTEN-vKO-
pp). A pooled population of wild-type PTEN control cells
was also established by infection with a control lentivirus
(PTENL/L).

Reagents

The generation of antibody that recognizes the growth
domain of PDGF D was previously described.22 Anti-
bodies against PTEN, phosphorylated �-PDGFR (Y751),
phosphorylated Akt (pAkt; T308 and S473), phosphory-
lated S6 kinase (S6K) (T389), total S6K, phosphorylated
c-Jun kinase (JNK; T183/Y185), total JNK, phosphory-

lated extracellular signal–regulated kinase (T202/Y204),
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total extracellular signal–regulated kinase, phosphory-
lated AMPK� (T172), and total AMPK� were obtained
from Cell Signaling Technology (Boston, MA). The
Akt1, Akt2, and Akt3 antibodies were obtained from
Upstate (Billerica, MA). Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was obtained from Santa
Cruz Biotechnology (Santa Cruz, CA). The AMPK acti-
vator, 5-aminoimidazole-4-carboxyamide ribonucleoside
(AICAR), was obtained from Cell Signaling Technology;
and the AMPK inhibitor, Compound C, was obtained from
Calbiochem (Gibbstown, NJ).

Inhibition of the PTEN Downstream Signaling
Pathways

Cells were cultured with complete growth media and
treated with indicated concentrations of inhibitors or
vehicle control. Cells were treated with 1 or 25 �mol/L
JNK Inhibitor II (Fisher Scientific, Waltham, MA), 1 or 25
�mol/L PD98059 (Sigma-Aldrich, St Louis, MO), 1 to 50
�mol/L LY294002 (Sigma-Aldrich), 10 to 50 nmol/L
wortmannin (Calbiochem), or 1 to 15 �mol/L Akt Inhib-
itor IV (Fisher Scientific) for 18 hours. Cells were
treated with 10 nmol/L rapamycin (Sigma-Aldrich) for
48 hours. mRNA was collected from cells at the des-
ignated time point and subjected to RT-PCR and real-
time RT-PCR analyses.

RT-PCR

mRNA was purified from cells using the RNeasy kit (Qia-
gen, Valencia, CA). cDNA synthesis was performed with
a Superscript III First-Strand Synthesis System (Invitro-
gen, Carlsbad, CA), followed by PCR using GoTaq Flexi
DNA Polymerase (Promega, Madison, WI). Forward and
reverse murine-specific primers used are as follows:
PDGF B, 5=-GCCTGTGACTAGAAGTCCTG-3= (forward)
and 5=-GTCATGGGTGTGCTTAAACT-3= (reverse); PDGF
D, 5=-CAGGGAAGACAGTGAAGAAG-3= (forward) and
5=-GAGCTGCAGATACAGTCACA-3= (reverse); �-PDGFR,
5=-CATCATGAGGGACTCAAACT-3= (forward) and 5=-GA-
TGGCATTGTAGAACTGGT-3= (reverse); PTEN, 5=-ACAC-
CGCCAAATTTAACTGC-3= (forward) and 5=-TGAGGTTTC-
CTCTGGTCCTG-3= (reverse); Akt1, 5=-GACCCACGACC-
GCCTCTG-3= (forward) and 5=-GACACAATCTCCG-
CACCATAGAAG-3= (reverse); Akt2, 5=-GAGGACGCCATG-
GATTACAAG-3= (forward) and 5=-GACAGCTACCTCCAT-
CATCTCAGA-3= (reverse); and Akt3, 5=-GAGTACCTGG-
CACCAGAGGT-3= (forward) and 5=-AGAAAGGCAAC-
CTTCCACAC-3= (reverse). Forward and reverse human-
specific primers used are as follows: PDGF B, 5=-CATTC-
CCGAGGAGCTTTATG-3= (forward) and 5=-CTCAGCAA-
TGGTCAGGGAAC-3= (reverse); PDGF D, 5=-GAACA-
GCTACCCCAGGAACC-3= (forward) and 5=-CTTGTGTC-
CACACCATCGTC-3= (reverse); PTEN, 5=-GGACGAACTG-
GTGTAATGATATG-3= (forward) and 5=-TCTACTGTTTTT-
GTGAAGTACAGC-3= (reverse); Akt1, 5=-ATGAGCGA-
CGTGGCTATTGTGAAG-3= (forward) and 5=-GAGGCCGT-
CAGCCACAGTCTGGATG-3= (reverse); Akt2, 5=-ATGAAT-

GAGGTGTCTGTCATCAAAGAAGGC-3= (forward) and 5=-
TGCTTGAGGCTGTTGGCGACC-3= (reverse); and Akt3, 5=-
ATGAGCGATGTTACCATTGT-3= (forward) and 5=-CAG-
TCTGTCTGCTACAGCCTGGATA-3= (reverse). Forward
and reverse primers recognizing both murine and human
GAPDH were 5=-ATCACCATCTTCCAGGAGCGA-3= and
5=-GCCAGTGAGCTTCCCGTTCA-3=, respectively.

Real-Time RT-PCR

mRNA was purified from cells using the RNeasy kit (Qia-
gen). cDNA synthesis was performed with a Superscript III
First-Strand Synthesis System (Invitrogen). Real-time RT-
PCR was performed using SYBR Green QPCR Master Mix
(Stratagene, La Jolla, CA) and the Stratagene MX4000
qPCR System, according to the manufacturer’s protocol.
Relative values of gene expression were normalized to
GAPDH and calculated using the 2-��C

T method, where
��CT � (�CTtarget gene-�CTGAPDH)sample-(�CTtarget gene-
�CTGAPDH)control. The fold change in relative expression
was then determined by calculating 2-��C

T.

IHC Analysis of Murine Prostate Tissues

Slides of formalin-fixed, paraffin-embedded prostate sec-
tions from PTEN�/� and PTEN�/� mice at the age of 8
weeks were deparaffinized with xylene, then rehydrated
sequentially with decreasing concentrations of EtOH from
100% to 70%, followed by water. Endogenous peroxi-
dase activity was blocked with 3% H2O2, and antigen
retrieval was performed by steaming for 20 minutes in
Antigen Retrieval Citra Plus Solution (BioGenex, Free-
mont, CA). Slides were then washed twice with PBS and
blocked with Cas-Block solution (Invitrogen). Slides were
incubated overnight at 4°C in a humidified chamber with
either anti-PDGF D polyclonal antibody (Ab; 8D2, 1:500
dilution) or anti-phosphorylated-�-PDGFR polyclonal Ab
(1:100 dilution). Sections were then washed twice with
PBS and incubated with ABC Vectastain Kit (Vector Labs,
Burlingame, CA), according to manufacturer’s protocol,
followed by incubation with 3,3=-diaminobenzidine tetra-
hydrochloride (Vector Labs). Mayer’s hematoxylin (Sig-
ma-Aldrich) was used to counterstain the nuclei. Sections
were then dehydrated with increasing concentrations of
EtOH, washed with xylene twice, and mounted with Per-
mount (Sigma-Aldrich).

IHC Analysis of Human Prostate Carcinoma

Serial sections of formalin-fixed, paraffin-embedded
prostate sections from human PCa were stained for
PDGF D and PTEN, as previously described.23 Slides
were incubated overnight at 4°C with anti-PDGF D
polyclonal Ab (8D2, 1:50 dilution) or anti-PTEN mono-
clonal Ab (1:250 dilution, clone 6H2.1; Cascade Bio-

science, Winchester, MA).
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Results

Up-Regulation of PDGF D and �-PDGFR in
Prostate Tumors from PTEN-Null Mice

We recently demonstrated PDGF D expression in human
tissues and a positive association with grade and
stage.11 We also demonstrated that PDGF D drives PCa
aggressiveness in animal models.12 Increased PDGF D
expression and its potential oncogenic activity in PCa
progression raised a question as to how PDGF D expres-
sion is regulated in prostate tumor cells. Given the well-
known functions of PTEN in the regulation of growth factor
signaling24,25 and its frequent loss in PCa, we hypothe-
sized that the PDGF D/�-PDGFR pathway is driven by
PTEN deficiency. To address this hypothesis, we first
examined PDGF D expression in normal prostate tissues
from control PTEN�/� mice and prostate adenocarcino-
mas from PTEN�/� mice. As shown in Figure 1A, IHC
analysis showed higher expression levels of PDGF D in
the prostate tumor tissues with prostate-specific PTEN
deletion (PTEN�/�) compared with the prostate of
PTEN�/� mice. Although PDGF D was detected mostly in
the ventral prostate, increased PDGF D expression was
detected in all prostate lobes, including the dorsolateral
prostate and anterior prostate. Increased PDGF D ex-
pression was accompanied by higher levels of phosphor-
ylated forms of �-PDGFR in prostate carcinomas in
PTEN�/� mice, indicating active �-PDGFR signaling (Fig-
ure 1B). In contrast, �-PDGFR activation was barely de-
tected in normal prostate tissues. Unlike PDGF B, a clas-
sic ligand for �-PDGFR, PDGF D is secreted as a latent
homodimer, and serine protease–mediated proteolytic
removal of the N-terminal domain is required for the
growth factor domain dimer to induce �-PDGFR
dimerization and phosphorylation.26,27 To determine
whether the active form of PDGF D dimer is present in
these prostate tumor tissues, immunoblot analysis was
performed. As expected from activated �-PDGFR, the
growth factor domain dimer of PDGF D was readily de-
tected in tumor tissues isolated from the prostates of
PTEN�/� mice (Figure 1C), indicating activation of PDGF
D/�-PDGFR signaling in these tumor cells.

PTEN Loss-Mediated PDGF Ligand Switch and
a Critical Role for PI3K/Akt in PDGF D Up-
Regulation

To further investigate the role of PTEN in the regulation
of PDGF expression, we used mouse prostate epithe-
lial cell lines derived from PTEN�/�, PTEN�/�, and
PTEN�/� mice harboring prostate-specific deletion of
PTEN exon 5. The exon 5 encodes the phosphatase
domain; thus, deletion of this exon results in loss of
PTEN phosphatase activity. As shown in Figure 2A,
RT-PCR analysis using a forward primer in exon 4 and
a reverse primer in exon 8 confirmed wild-type and
exon 5– deleted PTEN mRNA expression in PTEN�/�

and PTEN�/� cells, respectively. As expected,

PTEN�/� cells expressed both wild-type and exon
5– deleted PTEN mRNAs. Exon 5– deleted PTEN pro-
tein was undetectable, suggesting loss of PTEN func-
tion in PTEN�/� cells. When we examined the mRNA
levels of �-PDGFR and its ligands, PDGF B and PDGF
D, PDGF B expression was markedly down-regulated
in PTEN�/� cells compared with PTEN�/� and
PTEN�/� cells. Conversely, PDGF D and �-PDGFR lev-
els were elevated in PTEN�/�, but not PTEN�/� or
PTEN�/�, cells (Figure 2A). Immunoblot analysis also
showed increased PDGF D and decreased PDGF B
expression in PTEN�/� cells compared with PTEN�/�

or PTEN�/� cells (Figure 2B). These results showed
that homozygous deletion of PTEN is associated with a
�-PDGFR ligand switch from PDGF B to PDGF D,
closely recapitulating expression patterns of PDGF li-
gands in human prostate tumor tissues.

To identify the PTEN pathways responsible for the

Figure 1. Activation of PDGF D/�-PDGFR in prostate tumors in PTEN�/�

mice. A and B: Prostate tissue sections from PTEN�/� and PTEN�/� mice
were immunostained with antibodies against PDGF D (A) or phosphor-
ylated �-PDGFR (B). Original magnification, �20. AP, anterior prostate;
DL, dorsolateral prostate; VP, ventral prostate. C:Prostate tissue lysate
from PTEN�/� and PTEN�/� mice was resolved on nonreducing SDS-
PAGE, followed by immunoblot analysis with anti-PDGF D antibody. The
asterisk indicates nonspecific. FL-D, full-length dimer; GFD-D, growth
factor domain dimer.
regulation of PDGF gene expression, PTEN�/� cells
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were treated with established pharmacological inhibi-
tors of PTEN downstream signaling molecules and ex-
amined for their effects on PDGF gene regulation. Al-
though inhibitors of mammalian target of rapamycin
(mTOR), JNK, and MAPK/Erk kinase (MEK) kinase had
little effect on PDGF regulation, inhibition of PI3K with
either LY294002 or wortmannin resulted in decreased
expression of both PDGF D and �-PDGFR (Figure 2, C
and D). These results suggest that the PI3K pathway,
activated on PTEN loss, is critical for up-regulation of

Figure 2. Loss of PTEN modulates expression of PDGFs/PDGFR through
�-PDGFR in PTEN�/�, PTEN�/�, and PTEN�/� cells were analyzed by
PTEN�/�, and PTEN�/� cells; resolved on reducing SDS-PAGE; and immu
were treated for 2 days with the mTOR inhibitor rapamycin (Rap.) or o
inhibitor PD98059, the PI3K inhibitor LY294002, or wortmannin. In C, cel
with antibodies directed against phosphorylated and total S6K (pS6K
extracellular signal–regulated kinase (pERK and tERK, respectively; T202/
of PDGF B, PDGF D, and �-PDGFR were analyzed by RT-PCR.
PDGF D and �-PDGFR. Given that Akt is a downstream
effector of PI3K, the expression levels of the three Akt
isoforms were analyzed by RT-PCR and immunoblot
analyses. The mRNA and protein levels of Akt1 were
consistent regardless of the PTEN status, whereas Akt2
and Akt3 were increased in PTEN�/� cells compared
with PTEN�/� and PTEN�/� cells (Figure 3, A and B).
As expected, active pAkt was evident in PTEN�/� cells
(Figure 3B). Treatment of PTEN�/� cells with Akt Inhib-
itor IV, a pan inhibitor of all Akt isoforms, reduced
PDGF D and �-PDGFR mRNA levels in PTEN�/� cells,

K pathway. A: mRNA expression levels of PTEN, PDGF B, PDGF D, and
. B: Conditioned medium was collected from serum-starved PTEN�/�,
ed with anti-PDGF D or anti-PDGF B antibodies. C and D: PTEN�/� cells
t with increasing concentrations of JNK inhibitor (Inhib.) II, the MAPK
were collected and resolved on reducing SDS-PAGE and immunoblotted

K, respectively; T389), JNK (pJNK and tJNK, respectively; T183/Y185),
nd Akt (pAkt and tAkt, respectively; S473). In D, mRNA expression levels
the PI3
RT-PCR
noblott
vernigh
l lysates
and tS6
demonstrating that the PI3K/Akt pathway is critical for
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the maintenance of increased PDGF D and �-PDGFR
mRNA expression in the context of PTEN loss
(Figure 3C).

In Vitro PTEN Knockout in Mouse Epithelial
Cells Results in a PDGF Ligand Switch from
PDGF B to PDGF D

The previous results demonstrated increased PDGF D
expression in PTEN�/� cells derived from prostate tu-
mor of prostate-specific PTEN-null mice, whereas nor-
mal mouse prostate epithelial cells express PDGF B.
Next, we asked whether the PDGF ligand switch was a
direct effect of PTEN loss or an indirect effect due to
genetic alterations that occurred during PCa progres-
sion initiated by PTEN loss in vivo. To address this
question, mouse prostate epithelial cells were isolated
from prostates of mice harboring floxed PTEN at the
age of 8 weeks, as depicted in Figure 4A. After in vitro
delivery of Cre recombinase by a lentiviral vector, de-
letion of PTEN exon 5 was confirmed by RT-PCR anal-
ysis (Figure 4B) and increased pAkt by immunoblot
analysis (Figure 4C). Consistent with what was ob-
served in PTEN�/� tumor cells, increased Akt2 and
Akt3 protein levels were readily detected in normal
mouse prostate epithelial cells on PTEN loss in vitro
(Figure 4D). More important, in vitro PTEN knockout
resulted in decreased expression of PDGF B expres-
sion and increased PDGF D, compared with the control
PTENloxP/loxP cells (Figure 4B). Treatment of these in
vitro PTEN knockout cells with inhibitors of PI3K or Akt
reduced PDGF D mRNA levels in a dose-dependent
manner (Figure 4E). These results demonstrate that
PTEN loss results in an immediate PDGF ligand switch
from PDGF B to PDGF D and that PI3K/Akt plays a
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Inverse Correlation between PTEN and PDGF
Expression in Human PCa

Next, we wanted to examine whether the PTEN pathway
regulates PDGF expression in a similar fashion in human
prostate epithelial cells. To this end, the PTEN-deficient
human PCa cell line PC3 and the wild-type PTEN-ex-
pressing human PCa cell line DU145 were analyzed for
PDGF expression. Loss of PTEN expression and in-
creased pAkt in PC3 were confirmed by RT-PCR and
immunoblot analyses (Figure 5, A and B). Consistent with
results obtained from the mouse models of PTEN loss,
increased PDGF D expression and decreased PDGF B
expression were detected in PC3 cells compared with
DU145 cells (Figure 5A). In addition, expression of Akt3
was evident in PTEN-deficient PC3 cells (Figure 5, A and
B). Furthermore, inhibition of either PI3K or Akt resulted in
decreased PDGF D mRNA expression in PC3 cells (Fig-
ure 5, C and D).

Our previous IHC analysis of human PCa tissues
showed increased PDGF D expression in human PCa
tissues.23 To our knowledge, there are no published his-
tological data concerning the relationship between PTEN
status and PDGF D expression in human prostate tumor
tissues. To address this, adjacent slides from PCa spec-
imens used in our previous study were probed with anti-
PTEN antibody. Representative images of IHC analysis
demonstrated an inverse relationship between PTEN and
PDGF D, as shown in Figure 5E. Areas of prostate carci-
noma that exhibit loss of PTEN also exhibited a concom-
itant increase in PDGF D expression, whereas areas that
showed PTEN expression often displayed PDGF D ex-
pression at a low level.

AMPK Regulates PDGF B Expression

The previous results showed that inhibition of mTOR,
MAPK, or PI3K pathways failed to reverse PDGF B ex-

PT
EN

 -/
- C 

0 

0.5 

1 

1.5 

PDGF D -PDGFR 

0uM Akt 
Inhibitor IV 

1uM Akt 
Inhibitor IV 

15uM Akt 
Inhibitor IV 

R
el

at
iv

e 
m

R
N

A
 le

ve
l 

pAkt 
(S473) 

tAkt 

0µ
M

 

15
µM

 

1µ
M

 

rms in PTEN�/�, PTEN�/�, and PTEN�/� cells was determined by RT-PCR
g concentrations of Akt Inhibitor IV. Cell lysates were collected and resolved
total Akt (tAkt; top panel). mRNA expression levels of PDGF D and �-PDGF

rformed in triplicate (bottom panel). Data are given as mean � SD.

TE

N +
/- 

kt isofo
creasin
pression in PTEN�/� cells. To determine the signaling



antibodie
riments

PTEN/PI3K/Akt Regulates PDGF D/�-PDGFR 1023
AJP March 2012, Vol. 180, No. 3
pathways altered by PTEN loss, which, in turn, down-
regulate PDGF B, we further examined potential signaling
pathways in relation to PTEN status, including AMPK.
AMPK is a central component of a highly conserved

Figure 4. Direct effects of in vitro loss of PTEN on PDGF expression. A: The
or viral knockout of PTEN (PTEN-vKO). PTEN�/�, PTEN�/�, and PTEN�/�

at the age of 8 weeks. Cell lines were established after spontaneous immorta
vitro deletion of PTEN was achieved by expression of the lentiviral Cre recom
selected from the pooled population (PTEN-vKO-pp). A pooled population of
(PTEN L/L). B: mRNA expression levels of PTEN and �-PDGFR and its ligands,
analyzed by RT-PCR. C and D: Expression levels of pAkt (C) and Akt (D)
immunoblotting. E: PTEN-vKO-#2 cells were treated overnight with increasing
were collected and resolved on reducing SDS-PAGE and immunoblotted with
levels were analyzed by real-time RT-PCR analysis from two independent expe
cellular energy sensing system that functions to maintain
cellular ATP levels.28 AMPK was chosen in this study
because increasing evidence suggests its critical role for
tumorigenesis and regulation of growth factor expres-
sion, such as vascular endothelial growth factor.29–32 As

depicts establishment of cell lines with in vivo knockout of PTEN (PTEN�/�)
prostate epithelial cells were isolated from prostates of corresponding mice
. PTENloxP/loxP cells were isolated from the prostates of 8-week-old mice. In
vector. PTEN-knockout clones (PTEN-vKO-#2 and PTEN-vKO-#3) were then
e PTEN control cells was also established by infection with a control lentivirus
and PDGF D, in wild-type PTENL/L and viral knockout PTEN-vKO cells were

s in wild-type PTENL/L and knockout PTEN-vKO cells were determined by
rations of LY294002 (left panel) or Akt Inhibitor IV (right panel). Cell lysates
s directed against pAkt and total Akt (top panel). PDGF D mRNA expression
performed in triplicate (bottom panel). Data are given as mean � SD.
diagram
mouse
lization
binase
wild-typ
PDGF B
isoform
concent
shown in Figure 6A, PTEN loss was associated with an
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increase in the level of phosphorylated (active) form of
AMPK, as detected with an antibody directed against
phosphorylated AMPK� (Thr172), whereas total AMPK�
protein levels were comparable regardless of PTEN sta-
tus. To examine whether increased AMPK activity is as-
sociated with PDGF B down-regulation, PTEN�/� cells
were treated with the AMPK activator, AICAR, or the
AMPK inhibitor, compound C, and their effects on PDGF
B mRNA expression were evaluated by real-time PCR
analysis. On pharmacological modulation, PDGF B
mRNA levels were inversely correlated with AMPK activity
(Figure 6B). Similar to mouse PTEN�/� prostate epithelial
cells, PDGF B mRNA expression was inversely correlated
with AMPK activity in human prostate carcinoma DU145
cells that express wild-type PTEN (Figure 6C). Unlike PDGF
B, PDGF D expression was undetectable in mouse
PTEN�/� or DU145 cells on AMPK modulation. Interest-
ingly, mRNA levels of �-PDGFR were positively correlated
with AMPK activity in both mouse prostate PTEN�/� and
human prostate DU145 epithelial cells (Figure 6, D and E).

Taken together, we propose that activation of the PI3K/

Figure 5. Relationship between PTEN and PDGF expression in human PC
analyzed by RT-PCR in human PCa cell lines DU145 and PC3. B: DU145
immunoblotted with antibodies directed against PTEN, Akt isoforms, pAkt, a
on reducing SDS-PAGE, and immunoblotted with anti-PDGF D Ab. C and D:
Akt Inhibitor IV (D). Cell lysates were collected and resolved on reducing SD
panel). mRNA expression levels of PDGF D were analyzed by real-time RT-P
are given as mean�SD. E: IHC analysis of PTEN and PDGF D was perfo
monoclonal Ab (1:250 dilution, clone 6H2.1; Cascade Bioscience) and anti-
Gleason score, 7 (3 � 4); tumor stage, T2. Right panel: Gleason score, 9 (
Akt pathway, possibly involving Akt3, potentiates the
PDGF D signaling axis, the AMPK pathway regulates
PDGF B expression, and both PTEN/PI3K/Akt and AMPK
pathways are involved in �-PDGFR expression in pros-
tate epithelial cells expressing PTEN.

Discussion

Increasing evidence indicates a critical role for �-PDGFR
signaling in PCa progression and bone metastasis. For
instance, PDGFR was identified as the most commonly
amplified transcript from pooled aspirate specimens of
PCa bone metastases.33 Clinically, �-PDGFR is signifi-
cantly up-regulated in 88% of primary and 80% of bone
metastatic PCa.9 In fact, bone marrow aspirates from
patients exhibiting bone metastatic disease show fre-
quent activation of �-PDGFR (50%) compared with
�-PDGFR (17%).34 �-PDGFR is activated by PDGF B and
PDGF D2; however, detection of PDGF B in benign pros-
tatic hyperplasia, prostatic intraepithelial neoplasia, and
high-grade adenocarcinoma has been unsuccess-

RNA expression levels of PTEN, Akt isoforms, PDGF B, and PDGF D were
C3 cell lysates were collected and resolved on reducing SDS-PAGE, and
DH. Conditioned media collected from DU145 and PC3 cells were resolved
lls were treated overnight with increasing concentrations of LY294002 (C) or
and immunoblotted with antibodies directed against pAkt and total Akt (top
two independent experiments performed in triplicate (bottom panel). Data
n adjacent sections of prostate adenocarcinoma samples using anti-PTEN
polyclonal Ab (8D2, 1:50 dilution), as previously described.11 Left panel:

tumor stage, T3a.
a. A: m
and P

nd GAP
PC3 ce

S-PAGE,
CR from
rmed o
ful.35,36 Our previous findings demonstrated significant
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PDGF D overexpression with an increasing Gleason
score, suggesting that PDGF D is the putative ligand
responsible for �-PDGFR activation during PCa progres-
sion.23 Although the PDGF A/�-PDGFR axis may play a
role in PCa,35,36 recent findings identified TMEFF2 as a
PDGF A sequestering molecule abrogating its mitogenic
potential.37 More important, TMEFF2 expression is signif-
icantly up-regulated during PCa, positively correlating
with PDGF A expression.37 Taken together, these find-
ings support greater clinical relevance of PDGF D–medi-
ated activation of �-PDGFR in PCa progression.

Consistent with the potential oncogenic activity of
PDGF signaling in PCa progression, preclinical stud-
ies38–42 demonstrated the therapeutic potential of target-
ing the PDGFR axis in PCa. In a mouse model of PCa,
treatment with the Bcr-Abl/PDGFR/c-Kit inhibitor Gleevec
(STI571, imatinib mesylate) reduced tumor incidence and
growth and increased apoptosis in the tumor cells and
tumor-associated endothelial cells.41 However, clinical
trials with Gleevec were halted because of excessive
adverse effects, such as diarrhea related to inhibition of
c-kit in the intestines and cardiotoxicity associated with
inhibition of c-abl in cardiac myocytes.43–45 Therefore,
more specific therapies that target PCa-specific PDGFR
signaling with less toxicity may await understanding of
molecular mechanisms underlying PCa-derived PDGF li-
gand expression.

In an effort to determine the mechanism resulting in

Figure 6. AMPK regulates PDGF B expression. A: Cell lysates collected fro
on reducing SDS-PAGE, and immunoblotted with antibodies directed agains
mouse prostate epithelial cells (B and D) and DU145 cells (C and E) were tre
C (right panel), AMPK activator and inhibitor, respectively. Cell lysates w
expression levels of PDGF B (B and C) and �-PDGFR (D and E) were analy
Data are given as mean � SD. �P � 0.05, relative to control (CON).
increased PDGF signaling in PCa, we turned to the PTEN
model because PTEN is a critical regulator of growth
factor signaling and is frequently lost or mutated in PCa.
By regulating the pathway of PI3K/Akt, a central intracel-
lular signaling node, PTEN plays a critical role in the
regulation of many cellular processes, including the cell
cycle, cell motility/invasion, cell adhesion, protein synthe-
sis, and glucose metabolism.46 In addition, recent stud-
ies47–51 unveiled new functions of PTEN as a protein
phosphatase and as a nuclear protein. More important,
evidence suggests that PTEN is critical for the mainte-
nance of chromosomal integrity, a function attributed to
its regulation of Chk1 for the control of DNA damage
checkpoint, transcription of Rad51 involved in double-
stranded DNA break repair, and its association with the
centromere by docking onto a centromere-binding pro-
tein, CENP-C.52,53 Thus, the loss of PTEN’s ability to
guard genomic integrity is thought to result in accumula-
tion of genetic defects leading to the acquisition of ag-
gressive phenotypes and metastasis. In this regard, the
in vitro PTEN knockout mouse prostate epithelial cell lines
established in this study provide a powerful tool to dis-
tinguish between direct effects of PTEN loss in the regu-
lation of gene expression and in vivo accumulation of
genetic alterations that resulted from genetic instability in
PTEN-null tumor cells.

Herein, we found that PTEN loss results in a �-PDGFR
ligand switch from PDGF B to PDGF D in prostate epi-
thelial cells. PDGF D induction requires PI3K/Akt, possi-

�/�, PTEN�/�, and PTEN�/� mouse prostate epithelial cells were resolved
orylated and total AMPK (pAMPK and tAMPK, respectively). B–E: PTEN�/�

h increasing micromolar concentrations of AICAR (left panel) or Compound
lyzed by immunoblot analysis for phosphorylated and total AMPK. mRNA
eal-time RT-PCR from two independent experiments performed in triplicate.
m PTEN
t phosph
ated wit
ere ana
bly induction of Akt3, and, to a lesser extent, Akt2. PTEN
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loss-mediated differential up-regulation of Akt isoforms is
of particular interest, because the PI3K/Akt axis involving
Akt2/Akt3 recently emerged as a key signaling pathway
for induction of cell motility and invasion, whereas Akt1 is
a general regulator of cell survival.54–57 Our efforts to
determine the functional significance of Akt3 in PTEN
loss-mediated PDGF D induction using a small-interfering
RNA approach were unsuccessful. Small-interfering
RNA–mediated Akt3 knockdown resulted in increased
Akt1 and Akt2 expression (data not shown), possibly as
the result of feedback signaling mechanisms, which com-
plicated our analyses. Nonetheless, by using established
pharmacological inhibitors, we demonstrated that the
PI3K/Akt signaling pathway is critical for the maintenance
of PDGF D up-regulation in prostate epithelial cells. In-
terestingly, none of the pharmacological inhibitors that
target PTEN downstream signaling molecules, such as
mTOR, JNK, MEK, PI3K, and Akt, were able to reverse
PTEN loss-mediated PDGF B down-regulation. The pres-
ent study shows that AMPK may be a key regulator for
PDGF B expression. In PTEN�/� mouse prostate tumor
cells, there is an increase in the level of active AMPK and
a decrease in PDGF B expression compared with the
PTEN�/� cells. This was somewhat unexpected given
that AMPK is a substrate of the tumor suppressor serine-
threonine kinase LKB1 and that LKB1, together with
AMPK, mediates suppressor functions.29,58,59 However,
recent studies60,61 showed that AMPK regulates gene
expression and promotes PCa cell growth and survival,
suggesting complex roles of AMPK for tumorigenesis in a
context-dependent manner. Thus, AMPK regulation of
growth factors, including PDGFs and their roles in human
cancers, warrants further investigation.

At present, little is known about PDGF isoform-specific
�-PDGFR signaling pathways and their cellular effects
during cancer development and progression. PDGF D
contains an N-terminal CUB domain, composed of ap-
proximately 110 amino acids, that shares sequence
homology with the CUB domains of the complement sub-
components C1r/C1s and bone morphogenetic protein-
1.62 Proteolytic removal of the CUB domain is required for
PDGF D activation of �-PDGFR. Evidence suggests that
proteolytically activated PDGF D/�-PDGFR signaling dif-
fers from PDGF B/�-PDGFR or PDGF D growth factor
domain/�-PDGFR signaling for the oncogenic effects.63

In agreement, we recently found that PDGF D expression
facilitates intraosseous PCa growth and leads to both
osteolytic and osteoblastic responses. PDGF D, but nei-
ther PDGF B nor the growth factor domain of PDGF D,
mediates osteoclast activation, suggesting PDGF D–spe-
cific signaling pathways. Taken together, we propose
that PTEN loss-mediated PDGF ligand switch from PDGF
B to PDGF D results in PCa-specific molecular signature
of PDGF signaling and also functionally contributes to
PCa progression.
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