8 research outputs found

    Global transpiration data from sap flow measurements : the SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.Peer reviewe

    Drought-Induced Reductions and Limited Recovery in the Radial Growth, Transpiration, and Canopy Stomatal Conductance of Mongolian Scots Pine (Pinus sylvestris var. mongolica Litv): A Five-Year Observation

    No full text
    Determining plant–water relationships in response to drought events can provide important information about the adaptation of trees to climate change. The Mongolian Scots pine (Pinus sylvestris var. mongolica Litv), as one of the major tree species to control soil loss and desertification in northern China, has experienced severe degradation in recent decades. Here, we aimed to examine the impacts of a two-year consecutive drought and another year of drought on the radial growth, transpiration, and canopy stomatal conductance of Mongolian Scots pine over a five-year period, especially in terms of its recovery after drought. The study period during 2013–2017 consisted of a ‘normal’ year, a ‘dry year’, a ‘very dry’ year, a ‘wet’ year, and a ‘dry’ year, according to annual precipitation and soil moisture conditions. Based on measurements of the sap flow and diameters at breast height of 11 sample trees as well as the concurrent environmental factors, we quantified the reductions in tree radial growth, transpiration, and canopy stomatal conductance during the drought development as well as their recovery after the drought. The results showed that the tree radial growth, transpiration, and canopy stomatal conductance of Mongolian Scots pines decreased by 33.8%, 51.9%, and 51.5%, respectively, due to the two consecutive years of drought. Moreover, these reductions did not fully recover after the two-year drought was relieved. The minimum difference of these parameters between before and after the two-year consecutive drought period was 8.5% in tree radial growth, 45.1% in transpiration levels, and 42.4% in canopy stomatal conductance. We concluded that the two consecutive years of drought resulted in not only large reductions in tree radial growth and water use, but also their lagged and limited recoveries after drought. The study also highlighted the limited resilience of Mongolian Scots pine trees to prolonged drought in semi-arid sandy environmental conditions

    Key Strategies Underlying the Adaptation of Mongolian Scots Pine (<i>Pinus</i><i>sylvestris</i> var. <i>mongolica</i>) in Sandy Land under Climate Change: A Review

    No full text
    Forest degradation and mortality have been widely reported in the context of increasingly significant global climate change. As the country with the largest total tree plantation area globally, China has a great responsibility in forestry management to cope with climate change effectively. Mongolian Scots pine (Pinus sylvestris var. mongolica) was widely introduced from its natural sites in China into several other sandy land areas for establishing shelterbelt in the Three-North Shelter Forest Program, scoring outstanding achievements in terms of wind-breaking and sand-fixing. Mongolian Scots pine plantations in China cover a total area of ~800,000 hectares, with the eldest trees having >60 years. However, plantation trees have been affected by premature senescence in their middle-age stages (i.e., dieback, growth decline, and death) since the 1990s. This phenomenon has raised concerns about the suitability of Mongolian Scots pine to sandy habitats and the rationality for further afforestation, especially under the global climate change scenario. Fortunately, dieback has occurred only sporadically at specific sites and in certain years and has not spread to other regions in northern China; nevertheless, global climate change has become increasingly significant in that region. These observations reflect the strong drought resistance and adaptability of Mongolian Scots pines. In this review, we summarized the most recent findings on the ecohydrological attributes of Mongolian Scots pine during its adaptation to both fragile habitats and climate change. Five main species-specific strategies (i.e., opportunistic water absorb strategy, hydraulic failure risk avoidance strategy, water conservation strategy, functional traits adjustment strategy, rapid regeneration strategy) were summarized, providing deep insights into the tree–water relationship. Overall, the findings of this study can be applied to improve plantation management and better cope with climate-change-related drought stress

    Key Strategies Underlying the Adaptation of Mongolian Scots Pine (Pinussylvestris var. mongolica) in Sandy Land under Climate Change: A Review

    No full text
    Forest degradation and mortality have been widely reported in the context of increasingly significant global climate change. As the country with the largest total tree plantation area globally, China has a great responsibility in forestry management to cope with climate change effectively. Mongolian Scots pine (Pinus sylvestris var. mongolica) was widely introduced from its natural sites in China into several other sandy land areas for establishing shelterbelt in the Three-North Shelter Forest Program, scoring outstanding achievements in terms of wind-breaking and sand-fixing. Mongolian Scots pine plantations in China cover a total area of ~800,000 hectares, with the eldest trees having &gt;60 years. However, plantation trees have been affected by premature senescence in their middle-age stages (i.e., dieback, growth decline, and death) since the 1990s. This phenomenon has raised concerns about the suitability of Mongolian Scots pine to sandy habitats and the rationality for further afforestation, especially under the global climate change scenario. Fortunately, dieback has occurred only sporadically at specific sites and in certain years and has not spread to other regions in northern China; nevertheless, global climate change has become increasingly significant in that region. These observations reflect the strong drought resistance and adaptability of Mongolian Scots pines. In this review, we summarized the most recent findings on the ecohydrological attributes of Mongolian Scots pine during its adaptation to both fragile habitats and climate change. Five main species-specific strategies (i.e., opportunistic water absorb strategy, hydraulic failure risk avoidance strategy, water conservation strategy, functional traits adjustment strategy, rapid regeneration strategy) were summarized, providing deep insights into the tree&ndash;water relationship. Overall, the findings of this study can be applied to improve plantation management and better cope with climate-change-related drought stress

    中国天然臭柏生长特征地理差异的初步分析/Preliminary analysis on the geographical differences of growth characteristics of Juniperus sabina Ant.in China[J]

    No full text
    为了探讨中国天然臭柏(Juniperus sabina Ant.)生长特征的地理差异,在中国臭柏天然分布区选择14个样点开展了臭柏株高、地径、叶枝比的调查,并进行了统计分析.结果表明:1)中国臭柏的平均株高为65.11 ±7.12cm,平均地径为2.10 ±0.19cm,平均叶枝比为1.09 ±0.10;2)不同地区之间天然臭柏生长指标存在较显著的差异性,其中毛乌素沙地片区天然臭柏平均株高最高,新疆阿勒泰片区天然臭柏的平均地径最粗,祁连山片区天然臭柏的平均叶枝比最大;3)海拔为影响天然臭柏生长指标变化的主要地理因子,海拔与天然臭柏平均株高和平均地径之间具有显著的负相关关系,与平均叶枝比之间具有显著的正相关关系;4)臭柏天然分布区经纬度与平均株高、叶枝比间的关系不明显,但纬度与平均地径间有较明显的正相关,表明臭柏具有广阔的适生范围

    Global transpiration data from sap flow measurements: the SAPFLUXNET database

    No full text
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land–atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The “sapfluxnetr” R package – designed to access, visualize, and process SAPFLUXNET data – is available from CRAN
    corecore