19 research outputs found

    Coupled phase field and nonlocal integral elasticity analysis of stress-induced martensitic transformations at the nanoscale: boundary effects, limitations and contradictions

    Get PDF
    In this paper, the coupled phase field and local/nonlocal integral elasticity theories are used for stress-induced martensitic phase transformations (MPTs) at the nanoscale to investigate the limitations and contradictions of the nonlocal integral elasticity, which are due to the fact that the support of the nonlocal kernel exceeds the integration domain, i.e., the boundary effect. Different functions for the nonlocal kernel are compared. In order to compensate the boundary effect, a new nonlocal kernel, i.e., the compensated two-phase kernel, is introduced, in which a local part is added to the nonlocal part of the two-phase kernel to account for the boundary effect. In contrast to the previously introduced modified kernel, the compensated two-phase kernel does not lead to a purely nonlocal behavior in the core region, and hence no singular behavior, and consequently, no computational convergence issue is observed. The nonlinear finite element approach and the COMSOL code are used to solve the coupled system of Ginzburg–Landau and local/nonlocal integral elasticity equations. The numerical implementation of the phase field-local elasticity equations and the 2D nonlocal integral elasticity are verified. Boundary effect is investigated for MPT with both homogeneous and nonhomogeneous stress distributions. For the former, in contrast to the local elasticity, a nonhomogeneous phase transformation (PT) occurs in the nonlocal case with the two-phase kernel. Using the compensated two-phase kernel results in a homogeneous PT similar to the local elasticity. For the latter, the sample transforms to martensite except the adjacent region to the boundary for the local elasticity, while for the two-phase kernel, the entire sample transforms to martensite. The solution of the compensated two-phase kernel, however, is very similar to that of the local elasticity. The applicability of boundary symmetry in phase field problems is also investigated, which shows that it leads to incorrect results within the nonlocal integral elasticity. This is because when the symmetric portions of a sample are removed, the corresponding nonlocal effects on the remaining portion are neglected and the symmetric boundaries violate the normalization condition. An example is presented in which the results of a complete model with the two-phase kernel are different from those of its one-fourth model. In contrast, the compensated two-phase kernel can generate similar solutions for both the complete and one-fourth models. However, in general, none of the nonlocal kernels can overcome this issue. Therefore, the symmetrical models are not recommended for nonlocal integral elasticity based phase field simulations of MPTs. The current study helps for a better study of nonlocal elasticity based phase field problems for various phenomena such as various PTs

    A U-shaped relationship between haematocrit and mortality in a large prospective cohort study

    No full text
    Background: Only a limited number of studies have investigated the correlation between haematocrit (HCT) and mortality in the general population, and few of those studies have had data on a wide range of low and high levels of HCT. We investigated the association between baseline HCT and mortality in a prospective cohort study of 49 983 adult subjects in Iran with a broad spectrum of HCT values. Methods: Data on socio-demographic and life-style factors, past medical history, and levels of HCT were collected at enrollment. During a mean follow-up of 5 years (follow-up success rate ±99%), 2262 deaths were reported. Cox proportional hazards regression models were used to estimate hazard ratios and corresponding 95% confidence intervals. Results: There was a U-shaped relationship between categories of HCT and mortality in both sexes: both low and high levels of HCT were associated with increased overall mortality and mortality from cardiovascular disease. The U-shaped relationship persisted after several sensitivity analyses were done, including analyses restricted to non-smokers and non-users of opium; analyses excluding deaths from accidents and other external causes as well as deaths of persons with self-reported ischemic heart disease at the baseline interview for the study; and analyses excluding the first 2 years of follow-up. Self-reported past medical history and lack of data about lipids and other cellular blood components were the major limitations of the study. Conclusions: Low and high levels of HCT are associated with increased mortality in the general population. The findings in the present study can be of particular importance for low- and middle-income countries in which a substantial proportion of the population lives with suboptimal levels of HCT. © Published by Oxford University Press on behalf of the International Epidemiological Association 2013

    Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease

    Get PDF
    Metabolomics studies hold promise for the discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. Here we used a metabolomics approach to generate unbiased small-molecule metabolic profiles in plasma that predict risk for CVD. Three metabolites of the dietary lipid phosphatidylcholine—choline, trimethylamine N-oxide (TMAO) and betaine—were identified and then shown to predict risk for CVD in an independent large clinical cohort. Dietary supplementation of mice with choline, TMAO or betaine promoted upregulation of multiple macrophage scavenger receptors linked to atherosclerosis, and supplementation with choline or TMAO promoted atherosclerosis. Studies using germ-free mice confirmed a critical role for dietary choline and gut flora in TMAO production, augmented macrophage cholesterol accumulation and foam cell formation. Suppression of intestinal microflora in atherosclerosis-prone mice inhibited dietary-choline-enhanced atherosclerosis. Genetic variations controlling expression of flavin monooxygenases, an enzymatic source of TMAO, segregated with atherosclerosis in hyperlipidaemic mice. Discovery of a relationship between gut-flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for the development of new diagnostic tests and therapeutic approaches for atherosclerotic heart disease

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    Lipoprotein(a) levels and long-term cardiovascular risk in the contemporary era of statin therapy

    No full text
    Lipoprotein(a) [Lp(a)] has enhanced atherothrombotic properties. The ability of Lp(a) levels to predict adverse cardiovascular outcomes in patients undergoing coronary angiography has not been examined. The relationship between serum Lp(a) levels and both the extent of angiographic disease and 3-year incidence of major adverse cardiovascular events (MACE: death, myocardial infarction, stroke, and coronary revascularization) was investigated in 2,769 patients who underwent coronary angiography [median Lp(a) 16.4 mg/dl, elevated levels (≥30 mg/dl) in 38%]. An elevated Lp(a) was associated with a 2.3-fold [95% confidence interval (CI), 1.7–3.2, P < 0.001] greater likelihood of having a significant angiographic stenosis and 1.5-fold (95 CI, 1.3–1.7, P < 0.001) greater chance of three-vessel disease. Lp(a)≥30 mg/dl was associated with a greater rate of MACE (41.8 vs. 35.8%, P = 0.005), primarily due to a greater need for coronary revascularization (30.9 vs. 26.0%, P = 0.02). A relationship between Lp(a) levels and cardiovascular outcome was observed in patients with an LDL cholesterol (LDL-C) ≥70-100 mg/dl (P = 0.049) and >100 mg/dl (P = 0.02), but not <70 mg/dl (P = 0.77). Polymorphisms of Lp(a) were also associated with both plasma Lp(a) levels and coronary stenosis, but not a greater rate of MACE. Lp(a) levels correlate with the extent of obstructive disease and predict the need for coronary revascularization in subjects with suboptimal LDL-C control. This supports the need to intensify lipid management in patients with elevated Lp(a) levels

    Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction

    No full text
    Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance. When MI occurs early in life, genetic inheritance is a major component to risk. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families, whereas common variants at more than 45 loci have been associated with MI risk in the population. Here we evaluate how rare mutations contribute to early-onset MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age ( 6450 years in males and 6460 years in females) along with MI-free controls. We identified two genes in which rare coding-sequence mutations were more frequent in MI cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare non-synonymous mutations were at 4.2-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). Approximately 2% of early MI cases harbour a rare, damaging mutation in LDLR; this estimate is similar to one made more than 40 years ago using an analysis of total cholesterol. Among controls, about 1 in 217 carried an LDLR coding-sequence mutation and had plasma LDL cholesterol > 190\ua0mg\ua0dl(-1). At apolipoprotein A-V (APOA5), carriers of rare non-synonymous mutations were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol, whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding-sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase and apolipoprotein C-III (refs 18, 19). Combined, these observations suggest that, as well as LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk
    corecore