18 research outputs found

    Population genomics reveals evolution and variation of Saccharomyces cerevisiae in the human and insects gut

    Get PDF
    The quest to discover the variety of ecological niches inhabited by Saccharomyces cerevisiae has led to research in areas as diverse as wineries, oak trees, and insect guts. The discovery of fungal communities in the human gastrointestinal tract suggested the host's gut as a potential reservoir for yeast adaptation. Here we report the existence of yeast populations associated with the human gut (HG) that differ from those isolated from other human body sites. Phylogenetic analysis on 12 microsatellite loci and 1,715 combined CDSs from whole‐genome sequencing revealed three subclusters of HG strains with further evidence of clonal colonization within the host's gut. The presence of such subclusters was supported by other genomic features, such as copy number variation, absence/introgressions of CDSs and relative polymorphism frequency. Functional analysis of CDSs specific of the different subclusters suggested possible alterations in cell wall composition and sporulation features. The phenotypic analysis combined with immunological profiling of these strains further showed that sporulation was related with strain‐specific genomic characteristics in the immune recognition pattern. We conclude that both genetic and environmental factors involved in cell wall remodeling and sporulation are the main drivers of adaptation in S. cerevisiae populations in the human gut

    Characterization of cervico-vaginal microbiota in women developing persistent high-risk Human Papillomavirus infection

    Get PDF
    Abstract Changes in cervico-vaginal microbiota with Lactobacillus depletion and increased microbial diversity facilitate human papillomavirus (HPV) infection and might be involved in viral persistence and cancer development. To define the microbial Community State Types (CSTs) associated with high-risk HPV−persistence, we analysed 55 cervico-vaginal samples from HPV positive (HPV+) women out of 1029 screened women and performed pyrosequencing of 16S rDNA. A total of 17 samples from age-matched HPV negative (HPV−) women were used as control. Clearance or Persistence groups were defined by recalling women after one year for HPV screening and genotyping. A CST IV subgroup, with bacterial genera such as Gardnerella, Prevotella, Megasphoera, Atopobium, frequently associated with anaerobic consortium in bacterial vaginosis (BV), was present at baseline sampling in 43% of women in Persistence group, and only in 7.4% of women in Clearance group. Atopobium genus was significantly enriched in Persistence group compared to the other groups. Sialidase-encoding gene from Gardnerella vaginalis, involved in biofilm formation, was significantly more represented in Persistence group compared to the other groups. Based on these data, we consider the CST IV-BV as a risk factor for HPV persistence and we propose Atopobium spp and sialidase gene from G. vaginalis as microbial markers of HPV−persistence

    ONS : an ontology for a standardized description of interventions and observational studies in nutrition

    Get PDF
    Background: The multidisciplinary nature of nutrition research is one of its main strengths. At the same time, however, it presents a major obstacle to integrate data analysis, especially for the terminological and semantic interpretations that specific research fields or communities are used to. To date, a proper ontology to structure and formalize the concepts used for the description of nutritional studies is still lacking. Results: We have developed the Ontology for Nutritional Studies (ONS) by harmonizing selected pre-existing de facto ontologies with novel health and nutritional terminology classifications. The ONS is the result of a scholarly consensus of 51 research centers in nine European countries. The ontology classes and relations are commonly encountered while conducting, storing, harmonizing, integrating, describing, and searching nutritional studies. The ONS facilitates the description and specification of complex nutritional studies as demonstrated with two application scenarios. Conclusions: The ONS is the first systematic effort to provide a solid and extensible formal ontology framework for nutritional studies. Integration of new information can be easily achieved by the addition of extra modules (i.e., nutrigenomics, metabolomics, nutrikinetics, and quality appraisal). The ONS provides a unified and standardized terminology for nutritional studies as a resource for nutrition researchers who might not necessarily be familiar with ontologies and standardization concepts

    The Biological Connection Markup Language: a SBGN-compliant format for visualization, filtering and analysis of biological pathways

    Get PDF
    Motivation: Many models and analysis of signaling pathways have been proposed. However, neither of them takes into account that a biological pathway is not a fixed system, but instead it depends on the organism, tissue and cell type as well as on physiological, pathological and experimental conditions

    DC-ATLAS: a systems biology resource to dissect receptor specific signal transduction in dendritic cells

    Get PDF
    BACKGROUND: The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research, and capturing this specificity is of paramount importance when using pathway-based analyses to decipher complex immunological datasets. Here, we present DC-ATLAS, a novel and versatile resource for the interpretation of high-throughput data generated perturbing the signaling network of dendritic cells (DCs). RESULTS: Pathways are annotated using a novel data model, the Biological Connection Markup Language (BCML), a SBGN-compliant data format developed to store the large amount of information collected. The application of DC-ATLAS to pathway-based analysis of the transcriptional program of DCs stimulated with agonists of the toll-like receptor family allows an integrated description of the flow of information from the cellular sensors to the functional outcome, capturing the temporal series of activation events by grouping sets of reactions that occur at different time points in well-defined functional modules. CONCLUSIONS: The initiative significantly improves our understanding of DC biology and regulatory networks. Developing a systems biology approach for immune system holds the promise of translating knowledge on the immune system into more successful immunotherapy strategies

    Respuesta diferencial de las eIF2[alfa] quinasas de schizosaccharomyces pombe a distintas formas de estrés celular

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 05-09-2006The eIF2α kinases catalyze the phosphorylation of Ser-51 in the initiation factor 2 (eIF2). This reaction plays a key role in controlling protein synthesis in eukaryotic cells, particularly in response to stress conditions. In Saccharomyces cerevisiae, there is only one eIF2α kinase, which is the product of the gene GCN2. Its activity is required for yeast survival in those situations when certain amino acids are not found in the growth medium. However, in Saccharomyces pombe, there are three different genes that encode protein kinases of the same family: the GCN2 homologue and two other that are structurally related and have been designated as SEK1 and SEK2. Using deletion mutants of those genes, we have studied the effects on eIF2α phosphorylation caused by certain stress conditions: heat shock, oxidative stress, the presence of heavy metals and nitrogen depletion. Our results reveal that different eIF2α kinases are involved in the response to different treatments. Thus, SEK2 is activated preferentially after heat shock, while the response mediated by GCN2 is more efficient under oxidative stress. The presence of CdCl2 promotes the activation of SEK2 and GCN2, and nitrogen depletion appears to have similar effects on the activation of different eIF2α kinases of S. pombe. The results reported in this work indicate that translation regulation is a major target in the cellular response to stress conditions. The involvement of the eIF2α phosphorylation catalyzed by specific kinases in this process is demonstrated. However, the increase of the phosphorylated eIF2α levels appears to be an early event that has no detectable consequences on cell growth at longer times. The eIF2α kinases of S. pombe participate in signal transduction pathways involved in the response to stress conditions, and in the case of oxidative stress they appear to be regulated by the MAP kinase Sty

    Role of Mitogen-Activated Protein Kinase Sty1 in Regulation of Eukaryotic Initiation Factor 2α Kinases in Response to Environmental Stress in Schizosaccharomyces pombe▿

    No full text
    The mitogen-activated protein kinase (MAPK) Sty1 is essential for the regulation of transcriptional responses that promote cell survival in response to different types of environmental stimuli in Schizosaccharomyces pombe. In fission yeast, three distinct eukaryotic initiation factor 2α (eIF2α) kinases, two mammalian HRI-related protein kinases (Hri1 and Hri2) and the Gcn2 ortholog, regulate protein synthesis in response to cellular stress conditions. In this study, we demonstrate that both Hri1 and Hri2 exhibited an autokinase activity, specifically phosphorylated eIF2α, and functionally replaced the endogenous Saccharomyces cerevisiae Gcn2. We further show that Gcn2, but not Hri1 or Hri2, is activated early after exposure to hydrogen peroxide and methyl methanesulfonate (MMS). Cells lacking Gcn2 exhibit a later activation of Hri2. The activated MAPK Sty1 negatively regulates Gcn2 and Hri2 activities under oxidative stress but not in response to MMS. In contrast, Hri2 is the primary activated eIF2α kinase in response to heat shock. In this case, the activation of Sty1 appears to be transitory and does not contribute to the modulation of the eIF2α kinase stress pathway. In strains lacking Hri2, a type 2A protein phosphatase is activated soon after heat shock to reduce eIF2α phosphorylation. Finally, the MAPK Sty1, but not the eIF2α kinases, is essential for survival upon oxidative stress or heat shock, but not upon MMS treatment. These findings point to a regulatory coordination between the Sty1 MAPK and eIF2α kinase pathways for a particular range of stress responses

    Social wasp intestines host the local phenotypic variability of Saccharomyces cerevisiae strains

    Get PDF
    Nowadays, the presence of Saccharomyces cerevisiae has been assessed in both wild and human-related environments. Social wasps have been shown to maintain and vector S. cerevisiae among different environments. The availability of strains isolated from wasp intestines represents a striking opportunity to assess whether the strains found in wasp intestines are characterized by peculiar traits. We analysed strains isolated from the intestines of social wasps and compared them with strains isolated from other sources, all collected in a restricted geographic area. We evaluated the production of volatile metabolites during grape must fermentation, the resistance to different stresses and the ability to exploit various carbon sources. Wasp strains, in addition to representing a wide range of S. cerevisiae genotypes, also represent large part of the phenotypes characterizing the sympatric set of yeast strains; their higher production of acetic acid and ethyl acetate could reflect improved ability to attract insects. Our findings suggest that the relationship between yeasts and wasps should be preserved, to safeguard not only the natural variance of this microorganism but also the interests of wine-makers, who could take advantage from the exploitation of their phenotypic variability. Copyright © 2016 John Wiley & Sons, Ltd.This project was supported by SYBARIS (Grant No. 242220). Supplementary funds were provided by the University of Florence.Peer reviewe

    Deciphering the mechanism of action of 089, a compound impairing the fungal cell cycle

    No full text
    Fungal infections represent an increasingly relevant clinical problem, primarily because of the increased survival of severely immune-compromised patients. Despite the availability of active and selective drugs and of well-established prophylaxis, classical antifungals are often ineffective as resistance is frequently observed. The quest for anti-fungal drugs with novel mechanisms of action is thus important. Here we show that a new compound, 089, acts by arresting fungal cells in the G2 phase of the cell cycle through targeting of SWE1, a mechanism of action unexploited by current anti-fungal drugs. The cell cycle impairment also induces a modification of fungal cell morphology which makes fungal cells recognizable by immune cells. This new class of molecules holds promise to be a valuable source of novel antifungals, allowing the clearance of pathogenic fungi by both direct killing of the fungus and enhancing the recognition of the pathogen by the host immune system.This project was supported by European Union’s Seventh Framework Programme [FP7/2007-2013] under grant agreement n° HEALTH-2010-242220 (“SYBARIS”) and by EU Framework Programme 7 Collaborative Project [242220]-JPI ENPADASI. I.S. was supported by the “Sybaris” project and by a fellowship from the Wellcome Warwick Quantitative Biomedicine Programme (Institutional Strategic Support Fund: 105627/Z/14/Z). The authors would like to thank Enrica Calura and Gavin Sherlock for support and critical comments on the analyses
    corecore