462 research outputs found

    Tort, Social Security, and No-Fault Schemes: Lessons from Real-World Experiments

    Get PDF
    Background Anthropometric measurements are useful in clinical practice since they are non-invasive and cheap. Previous studies suggest that sagittal abdominal diameter (SAD) may be a better measure of visceral fat depots. The aim of this study was to prospectively explore and compare how laboratory and anthropometric risk markers predicted subclinical organ damage in 255 patients, with type 2 diabetes, after four years. Methods Baseline investigations were performed in 2006 and were repeated at follow-up in 2010. Carotid intima-media thickness (IMT) was evaluated by ultrasonography and aortic pulse wave velocity (PWV) was measured with applanation tonometry over the carotid and femoral arteries at baseline and at follow-up in a cohort of subjects with type 2 diabetes aged 55–65 years old. Results There were significant correlations between apolipoprotein B (apoB) (r = 0.144, p = 0.03), C - reactive protein (CRP) (r = 0.172, p = 0.009) at baseline and IMT measured at follow-up. After adjustment for sex, age, treatment with statins and Hba1c, the associations remained statistically significant. HbA1c, total cholesterol or LDL-cholesterol did not correlate to IMT at follow-up. Baseline body mass index (BMI) (r = 0.130, p = 0.049), waist circumference (WC) (r = 0.147, p = 0.027) and sagittal Abdominal Diameter (SAD) (r = 0.184, p = 0.007) correlated to PWV at follow-up. Challenged with sex, SBP and HbA1c, the association between SAD, not WC nor BMI, and PWV remained statistically significant (p = 0.036). In a stepwise linear regression, entering both SAD and WC, the association between SAD and PWV was stronger than the association between WC and PWV. Conclusions We conclude that apoB and CRP, but not LDL-cholesterol predicted subclinical atherosclerosis. Furthermore, SAD was more independent in predicting arterial stiffness over time, compared with WC, in middle-aged men and women with type 2 diabetes.Funding Agencies|Medical Research Council of Southeast Sweden||Center for Medical Image Science and Visualization (CMIV)||Linkoping University||Futurum||King Gustaf V and Queen Victoria Freemason Foundation||GE Healthcare||Swedish Heart-Lung Foundation||Swedish Research Council Grant|12661|</p

    Selection of high-z supernovae candidates

    Get PDF
    Deep, ground based, optical wide-field supernova searches are capable of detecting a large number of supernovae over a broad redshift range up to z~1.5. While it is practically unfeasible to obtain spectroscopic redshifts of all the supernova candidates right after the discovery, we show that the magnitudes and colors of the host galaxies, as well as the supernovae, can be used to select high-z supernova candidates, for subsequent spectroscopic and photometric follow-up. Using Monte-Carlo simulations we construct criteria for selecting galaxies in well-defined redshift bands. For example, with a selection criteria using B-R and R-I colors we are able to pick out potential host galaxies for which z>0.85 with 80% confidence level and with a selection efficiency of 64-86%. The method was successfully tested using real observations from the HDF. Similarly, we show that that the magnitude and colors of the supernova discovery data can be used to constrain the redshift. With a set of cuts based on V-R and R-I in a search to m_I~25, supernovae at z~1 can be selected in a redshift interval sigma_z <0.15.Comment: 33 pages, 13 figures, accepted for publication in PASP (March 2002 issue

    SNOC: a Monte-Carlo simulation package for high-z supernova observations

    Get PDF
    We present a Monte-Carlo package for simulation of high-redshift supernova data, SNOC. Optical and near-infrared photons from supernovae are ray-traced over cosmological distances from the simulated host galaxy to the observer at Earth. The distances to the sources are calculated from user provided cosmological parameters in a Friedmann-Lemaitre universe, allowing for arbitrary forms of ``dark energy''. The code takes into account gravitational interactions (lensing) and extinction by dust, both in the host galaxy and in the line-of-sight. The user can also choose to include exotic effects like a hypothetical attenuation due to photon-axion oscillations. SNOC is primarily useful for estimations of cosmological parameter uncertainties from studies of apparent brightness of Type Ia supernovae vs redshift, with special emphasis on potential systematic effects. It can also be used to compute standard cosmological quantities like luminosity distance, lookback time and age of the universe in any Friedmann-Lemaitre model with or without quintessence.Comment: 16 pages, 3 figure

    Near-IR search for lensed supernovae behind galaxy clusters: III. Implications for cluster modeling and cosmology

    Full text link
    Massive galaxy clusters at intermediate redshifts act as gravitational lenses that can magnify supernovae (SNe) occurring in background galaxies. We assess the possibility to use lensed SNe to put constraints on the mass models of galaxy clusters and the Hubble parameter at high redshift. Due to the standard candle nature of Type Ia supernovae (SNe Ia), observational information on the lensing magnification from an intervening galaxy cluster can be used to constrain the model for the cluster mass distribution. A statistical analysis using parametric cluster models was performed to investigate the possible improvements from lensed SNe Ia for the accurately modeled galaxy cluster A1689 and the less well constrained cluster A2204. Time delay measurements obtained from SNe lensed by accurately modeled galaxy clusters can be used to measure the Hubble parameter. For a survey of A1689 we estimate the expected rate of detectable SNe Ia and of multiply imaged SNe. The velocity dispersion and core radius of the main cluster potential show strong correlations with the predicted magnifications and can therefore be constrained by observations of SNe Ia in background galaxies. This technique proves especially powerful for galaxy clusters with only few known multiple image systems. The main uncertainty for measurements of the Hubble parameter from the time delay of strongly lensed SNe is due to cluster model uncertainties. For the extremely well modeled cluster A1689, a single time delay measurement could be used to determine the Hubble parameter with a precision of ~ 10%. We conclude that observations of SNe Ia behind galaxy clusters can be used to improve the mass modeling of the large scale component of galaxy clusters and thus the distribution of dark matter. Time delays from SNe strongly lensed by accurately modeled galaxy clusters can be used to measure the Hubble constant at high redshifts.Comment: 10 pages, 8 figures, 3 tables. Accepted for publication in A&

    A standard, single dose of inhaled terbutaline attenuates hyperpnoea-induced bronchoconstriction and mast cell activation in athletes

    Get PDF
    Release of broncho-active mediators from mast cells during exercise hyperpnoea is a key factor in the pathophysiology of exercise-induced bronchoconstriction (EIB). Our aim was to investigate the effect of a standard, single dose of an inhaled β2-adrenoceptor agonist on mast cell activation in response to dry air hyperpnoea in athletes with EIB. Twenty-seven athletes with EIB completed a randomised, double blind, placebo-controlled, crossover study. Terbutaline (0.5 mg) or placebo was inhaled15 min prior to 8 min of eucapnic voluntary hyperpnoea (EVH) with dry air. Pre- and post-bronchial challenge, urine samples were analysed by enzyme immunoassay for 11β-prostaglandin(PG)F2α. The maximum fall in forced expiratory volume in 1 sec(FEV1) of 14 (12-20)% (median and interquartile range) following placebo was attenuated to 7 (5-9)% with the administration of terbutaline (P<0.001). EVH caused a significant increase in 11β-PGF2α from (27-57) ng·mmol creatinine-1 at baseline to (43-72) ng·mmol creatinine-1 at its peak post-EVH following placebo (P=0.002). The rise in 11β-PGF2α was inhibited with administration of terbutaline: 39 (28-44) ng·mmol creatinine-1 at baseline vs. 40 (33-58) ng·mmol creatinine-1 at its peak post-EVH (P=0.118). These data provide novel in vivo evidence of mast cell stabilisation following inhalation of a standard dose of terbutaline prior to bronchial provocation with EVH in athletes with EIB

    Diagnostics of the Molecular Component of PDRs with Mechanical Heating

    Get PDF
    Context. Multitransition CO observations of galaxy centers have revealed that significant fractions of the dense circumnuclear gas have high kinetic temperatures, which are hard to explain by pure photon excitation, but may be caused by dissipation of turbulent energy. Aims. We aim to determine to what extent mechanical heating should be taken into account while modelling PDRs. To this end, the effect of dissipated turbulence on the thermal and chemical properties of PDRs is explored. Methods. Clouds are modelled as 1D semi-infinite slabs whose thermal and chemical equilibrium is solved for using the Leiden PDR-XDR code. Results. In a steady-state treatment, mechanical heating seems to play an important role in determining the kinetic temperature of the gas in molecular clouds. Particularly in high-energy environments such as starburst galaxies and galaxy centers, model gas temperatures are underestimated by at least a factor of two if mechanical heating is ignored. The models also show that CO, HCN and H2 O column densities increase as a function of mechanical heating. The HNC/HCN integrated column density ratio shows a decrease by a factor of at least two in high density regions with n \sim 105 cm-3, whereas that of HCN/HCO+ shows a strong dependence on mechanical heating for this same density range, with boosts of up to three orders of magnitude. Conclusions. The effects of mechanical heating cannot be ignored in studies of the molecular gas excitation whenever the ratio of the star formation rate to the gas density is close to, or exceeds, 7 \times 10-6 M yr-1 cm4.5 . If mechanical heating is not included, predicted column densities are underestimated, sometimes even by a few orders of magnitude. As a lower bound to its importance, we determined that it has non-negligible effects already when mechanical heating is as little as 1% of the UV heating in a PDR.Comment: 26 pages, 14 figures in the text and 13 figures as supplementary material. Accepted for publication in A&

    Supernova rates from the Southern inTermediate Redshift ESO Supernova Search (STRESS)

    Full text link
    To measure the supernova (SN) rates at intermediate redshift we performed the Southern inTermediate Redshift ESO Supernova Search (STRESS). Unlike most of the current high redshift SN searches, this survey was specifically designed to estimate the rate for both type Ia and core collapse (CC) SNe. We counted the SNe discovered in a selected galaxy sample measuring SN rate per unit blue band luminosity. Our analysis is based on a sample of ~43000 galaxies and on 25 spectroscopically confirmed SNe plus 64 selected SN candidates. Our approach is aimed at obtaining a direct comparison of the high redshift and local rates and at investigating the dependence of the rates on specific galaxy properties, most notably their colour. The type Ia SN rate, at mean redshift z=0.3, amounts to 0.22^{+0.10+0.16}_{-0.08 -0.14} h_{70}^2 SNu, while the CC SN rate, at z=0.21, is 0.82^{+0.31 +0.30}_{-0.24 -0.26} h_{70}^2 SNu. The quoted errors are the statistical and systematic uncertainties. With respect to local value, the CC SN rate at z=0.2 is higher by a factor of ~2 already at redshift, whereas the type Ia SN rate remains almost constant. This implies that a significant fraction of SN Ia progenitors has a lifetime longer than 2-3 Gyr. We also measured the SN rates in the red and blue galaxies and found that the SN Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe. SN rates per unit volume were found to be consistent with other measurements showing a steeper evolution with redshift for CC SNe with respect to SNe Ia. Finally we have exploited the link between star formation (SF) and SN rates to predict the evolutionary behaviour of the SN rates and compare it with the path indicated by observations.Comment: Accepted for publication in A&A; 25 pages (including on line material), 13 figure

    Evolution in the Volumetric Type Ia Supernova Rate from the Supernova Legacy Survey

    Full text link
    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate (SNR_Ia) as a function of redshift for the first four years of data from the Canada-France-Hawaii Telescope (CFHT) Supernova Legacy Survey (SNLS). This analysis includes 286 spectroscopically confirmed and more than 400 additional photometrically identified SNe Ia within the redshift range 0.1<z<1.1. The volumetric SNR_Ia evolution is consistent with a rise to z~1.0 that follows a power-law of the form (1+z)^alpha, with alpha=2.11+/-0.28. This evolutionary trend in the SNLS rates is slightly shallower than that of the cosmic star-formation history over the same redshift range. We combine the SNLS rate measurements with those from other surveys that complement the SNLS redshift range, and fit various simple SN Ia delay-time distribution (DTD) models to the combined data. A simple power-law model for the DTD (i.e., proportional to t^-beta) yields values from beta=0.98+/-0.05 to beta=1.15+/-0.08 depending on the parameterization of the cosmic star formation history. A two-component model, where SNR_Ia is dependent on stellar mass (Mstellar) and star formation rate (SFR) as SNR_Ia(z)=AxMstellar(z) + BxSFR(z), yields the coefficients A=1.9+/-0.1 SNe/yr/M_solar and B=3.3+/-0.2 SNe/yr/(M_solar/yr). More general two-component models also fit the data well, but single Gaussian or exponential DTDs provide significantly poorer matches. Finally, we split the SNLS sample into two populations by the light curve width (stretch), and show that the general behavior in the rates of faster-declining SNe Ia (0.8<s<1.0) is similar, within our measurement errors, to that of the slower objects (1.0<s<1.3) out to z~0.8.Comment: Accepted in A

    Virulence factors and antibiotic susceptibility in enterococci isolated from oral mucosal and deep infections

    Get PDF
    This study evaluates the presence of virulence factors and antibiotic susceptibility among enterococcal isolates from oral mucosal and deep infections. Forty-three enterococcal strains from oral mucosal lesions and 18 from deep infections were isolated from 830 samples that were sent during 2 years to Oral Microbiology, University of Gothenburg, for analysis. The 61 strains were identified by 16S rDNA, and characterized by the presence of the virulence genes efa A (endocarditis gene), gel E (gelatinase gene), ace (collagen binding antigen gene), asa (aggregation substance gene), cyl A (cytolysin activator gene) and esp (surface adhesin gene), tested for the production of bacteriocins and presence of plasmids. MIC determination was performed using the E-test method against the most commonly used antibiotics in dentistry, for example, penicillin V, amoxicillin and clindamycin. Vancomycin was included in order to detect vancomycin-resistant enterococci (VRE) strains. Sixty strains were identified as Enterococcus faecalis and one as Enterococcus faecium. All the virulence genes were detected in more than 93.3% (efa A and esp) of the E. faecalis strains, while the presence of phenotypic characteristics was much lower (gelatinase 10% and hemolysin 16.7%). Forty-six strains produced bacteriocins and one to six plasmids were detected in half of the isolates. Enterococcal strains from oral infections had a high virulence capacity, showed bacteriocin production and had numerous plasmids. They were generally susceptible to ampicillins but were resistant to clindamycin, commonly used in dentistry, and no VRE-strain was found
    corecore