3,090 research outputs found
Challenging GRB models through the broadband dataset of GRB060908
Context: Multiwavelength observations of gamma-ray burst prompt and afterglow
emission are a key tool to disentangle the various possible emission processes
and scenarios proposed to interpret the complex gamma-ray burst phenomenology.
Aims: We collected a large dataset on GRB060908 in order to carry out a
comprehensive analysis of the prompt emission as well as the early and late
afterglow. Methods: Data from Swift-BAT, -XRT and -UVOT together with data from
a number of different ground-based optical/NIR and millimeter telescopes
allowed us to follow the afterglow evolution from about a minute from the
high-energy event down to the host galaxy limit. We discuss the physical
parameters required to model these emissions. Results: The prompt emission of
GRB060908 was characterized by two main periods of activity, spaced by a few
seconds of low intensity, with a tight correlation between activity and
spectral hardness. Observations of the afterglow began less than one minute
after the high-energy event, when it was already in a decaying phase, and it
was characterized by a rather flat optical/NIR spectrum which can be
interpreted as due to a hard energy-distribution of the emitting electrons. On
the other hand, the X-ray spectrum of the afterglow could be fit by a rather
soft electron distribution. Conclusions: GRB060908 is a good example of a
gamma-ray burst with a rich multi-wavelength set of observations. The
availability of this dataset, built thanks to the joint efforts of many
different teams, allowed us to carry out stringent tests for various
interpretative scenarios showing that a satisfactorily modeling of this event
is challenging. In the future, similar efforts will enable us to obtain
optical/NIR coverage comparable in quality and quantity to the X-ray data for
more events, therefore opening new avenues to progress gamma-ray burst
research.Comment: A&A, in press. 11 pages, 5 figure
The short GRB070707 afterglow and its very faint host galaxy
We present the results from an ESO/VLT campaign aimed at studying the
afterglow properties of the short/hard gamma ray burst GRB 070707. Observations
were carried out at ten different epochs from ~0.5 to ~80 days after the event.
The optical flux decayed steeply with a power-law decay index greater than 3,
later levelling off at R~27.3 mag; this is likely the emission level of the
host galaxy, the faintest yet detected for a short GRB. Spectroscopic
observations did not reveal any line features/edges that could unambiguously
pinpoint the GRB redshift, but set a limit z < 3.6. In the range of allowed
redshifts, the host has a low luminosity, comparable to that of long-duration
GRBs. The existence of such faint host galaxies suggests caution when
associating short GRBs with bright, offset galaxies, where the true host might
just be too dim for detection. The steepness of the decay of the optical
afterglow of GRB 070707 challenges external shock models for the optical
afterglow of short/hard GRBs. We argue that this behaviour might results from
prolonged activity of the central engine or require alternative scenarios.Comment: 6 pages, 5 figures, accepted by A&
The electromagnetic model of Gamma Ray Bursts
I describe electromagnetic model of gamma ray bursts and contrast its main
properties and predictions with hydrodynamic fireball model and its
magnetohydrodynamical extension. The electromagnetic model assumes that
rotational energy of a relativistic, stellar-mass central source
(black-hole--accretion disk system or fast rotating neutron star) is converted
into magnetic energy through unipolar dynamo mechanism, propagated to large
distances in a form of relativistic, subsonic, Poynting flux-dominated wind and
is dissipated directly into emitting particles through current-driven
instabilities. Thus, there is no conversion back and forth between internal and
bulk energies as in the case of fireball model. Collimating effects of magnetic
hoop stresses lead to strongly non-spherical expansion and formation of jets.
Long and short GRBs may develop in a qualitatively similar way, except that in
case of long bursts ejecta expansion has a relatively short, non-relativistic,
strongly dissipative stage inside the star. Electromagnetic and fireball models
(as well as strongly and weakly magnetized fireballs) lead to different early
afterglow dynamics, before deceleration time. Finally, I discuss the models in
view of latest observational data in the Swift era.Comment: solicited contribution to Focus Issue of New Journal of Physics, 27
pages, 4 figure
Search for Yukawa Production of a Light Neutral Higgs Boson at LEP
Within a Two-Higgs-Doublet Model (2HDM) a search for a light Higgs boson in
the mass range of 4-12 GeV has been performed in the Yukawa process e+e- -> b
bbar A/h -> b bbar tau+tau-, using the data collected by the OPAL detector at
LEP between 1992 and 1995 in e+e- collisions at about 91 GeV centre-of-mass
energy. A likelihood selection is applied to separate background and signal.
The number of observed events is in good agreement with the expected
background. Within a CP-conserving 2HDM type II model the cross-section for
Yukawa production depends on xiAd = |tan beta| and xihd = |sin alpha/cos beta|
for the production of the CP-odd A and the CP-even h, respectively, where tan
beta is the ratio of the vacuum expectation values of the Higgs doublets and
alpha is the mixing angle between the neutral CP-even Higgs bosons. From our
data 95% C.L. upper limits are derived for xiAd within the range of 8.5 to 13.6
and for xihd between 8.2 to 13.7, depending on the mass of the Higgs boson,
assuming a branching fraction into tau+tau- of 100%. An interpretation of the
limits within a 2HDM type II model with Standard Model particle content is
given. These results impose constraints on several models that have been
proposed to explain the recent BNL measurement of the muon anomalous magnetic
moment.Comment: 24 pages, 9 figures, Submitted to Euro. Phys. J.
Scaling violations of quark and gluon jet fragmentation functions in e+e- annihilations at sqrt(s) = 91.2 and 183-209 GeV
Flavour inclusive, udsc and b fragmentation functions in unbiased jets, and
flavour inclusive, udsc, b and gluon fragmentation functions in biased jets are
measured in e+e- annihilations from data collected at centre-of-mass energies
of 91.2, and 183-209 GeV with the OPAL detector at LEP. The unbiased jets are
defined by hemispheres of inclusive hadronic events, while the biased jet
measurements are based on three-jet events selected with jet algorithms.
Several methods are employed to extract the fragmentation functions over a wide
range of scales. Possible biases are studied in the results are obtained. The
fragmentation functions are compared to results from lower energy e+e-
experiments and with earlier LEP measurements and are found to be consistent.
Scaling violations are observed and are found to be stronger for the
fragmentation functions of gluon jets than for those of quarks. The measured
fragmentation functions are compared to three recent theoretical
next-to-leading order calculations and to the predictions of three Monte Carlo
event generators. While the Monte Carlo models are in good agreement with the
data, the theoretical predictions fail to describe the full set of results, in
particular the b and gluon jet measurements.Comment: 46 pages, 17 figures, Submitted to Eur. Phys J.
A study of charm production in beauty decays with the OPAL detector at LEP
Using an inclusive method, BR(b -> D\bar{D}X) has been measured in hadronic
Z^0 decays with the OPAL detector at LEP. The impact parameter significance of
tracks opposite tagged b-jets is used to differentiate b -> D\bar{D}X decays
from other decays. Using this result, the average number of charm and
anti-charm quarks produced per beauty quark decay, n_c, is determined.Comment: 20 pages, 4 figure
Tests of model of color reconnection and a search for glueballs using gluon jets with a rapidity gap
Gluon jets with a mean energy of 22 GeV and purity of 95% are selected from
hadronic Z0 decay events produced in e+e- annihilations. A subsample of these
jets is identified which exhibits a large gap in the rapidity distribution of
particles within the jet. After imposing the requirement of a rapidity gap, the
gluon jet purity is 86%. These jets are observed to demonstrate a high degree
of sensitivity to the presence of color reconnection, i.e. higher order QCD
processes affecting the underlying color structure. We use our data to test
three QCD models which include a simulation of color reconnection: one in the
Ariadne Monte Carlo, one in the Herwig Monte Carlo, and the other by Rathsman
in the Pythia Monte Carlo. We find the Rathsman and Ariadne color reconnection
models can describe our gluon jet measurements only if very large values are
used for the cutoff parameters which serve to terminate the parton showers, and
that the description of inclusive Z0 data is significantly degraded in this
case. We conclude that color reconnection as implemented by these two models is
disfavored. The signal from the Herwig color reconnection model is less clear
and we do not obtain a definite conclusion concerning this model. In a separate
study, we follow recent theoretical suggestions and search for glueball-like
objects in the leading part of the gluon jets. No clear evidence is observed
for these objects.Comment: 42 pages, 18 figure
Measurements of Flavour Dependent Fragmentation Functions in Z^0 -> qq(bar) Events
Fragmentation functions for charged particles in Z -> qq(bar) events have
been measured for bottom (b), charm (c) and light (uds) quarks as well as for
all flavours together. The results are based on data recorded between 1990 and
1995 using the OPAL detector at LEP. Event samples with different flavour
compositions were formed using reconstructed D* mesons and secondary vertices.
The \xi_p = ln(1/x_E) distributions and the position of their maxima \xi_max
are also presented separately for uds, c and b quark events. The fragmentation
function for b quarks is significantly softer than for uds quarks.Comment: 29 pages, LaTeX, 5 eps figures (and colour figs) included, submitted
to Eur. Phys. J.
Bose-Einstein Correlations in e+e- to W+W- at 172 and 183 GeV
Bose-Einstein correlations between like-charge pions are studied in hadronic
final states produced by e+e- annihilations at center-of-mass energies of 172
and 183 GeV. Three event samples are studied, each dominated by one of the
processes W+W- to qqlnu, W+W- to qqqq, or (Z/g)* to qq. After demonstrating the
existence of Bose-Einstein correlations in W decays, an attempt is made to
determine Bose-Einstein correlations for pions originating from the same W
boson and from different W bosons, as well as for pions from (Z/g)* to qq
events. The following results are obtained for the individual chaoticity
parameters lambda assuming a common source radius R: lambda_same = 0.63 +- 0.19
+- 0.14, lambda_diff = 0.22 +- 0.53 +- 0.14, lambda_Z = 0.47 +- 0.11 +- 0.08, R
= 0.92 +- 0.09 +- 0.09. In each case, the first error is statistical and the
second is systematic. At the current level of statistical precision it is not
established whether Bose-Einstein correlations, between pions from different W
bosons exist or not.Comment: 24 pages, LaTeX, including 6 eps figures, submitted to European
Physical Journal
Measurement of triple gauge boson couplings from WW production at LEP energies up to 189 GeV
A measurement of triple gauge boson couplings is presented, based on W-pair
data recorded by the OPAL detector at LEP during 1998 at a centre-of-mass
energy of 189 GeV with an integrated luminosity of 183 pb^-1. After combining
with our previous measurements at centre-of-mass energies of 161-183 GeV we
obtain k_g=0.97 +0.20 -0.16, g_1^z=0.991 +0.060 -0.057 and lambda_g=-0.110
+0.058 -0.055, where the errors include both statistical and systematic
uncertainties and each coupling is determined by setting the other two
couplings to their SM values. These results are consistent with the Standard
Model expectations.Comment: 28 pages, 8 figures, submitted to Eur. Phys. J.
- …