38 research outputs found

    The Search for Invariance: Repeated Positive Testing Serves the Goals of Causal Learning

    Get PDF
    Positive testing is characteristic of exploratory behavior, yet it seems to be at odds with the aim of information seeking. After all, repeated demonstrations of one’s current hypothesis often produce the same evidence and fail to distinguish it from potential alternatives. Research on the development of scientific reasoning and adult rule learning have both documented and attempted to explain this behavior. The current chapter reviews this prior work and introduces a novel theoretical account—the Search for Invariance (SI) hypothesis—which suggests that producing multiple positive examples serves the goals of causal learning. This hypothesis draws on the interventionist framework of causal reasoning, which suggests that causal learners are concerned with the invariance of candidate hypotheses. In a probabilistic and interdependent causal world, our primary goal is to determine whether, and in what contexts, our causal hypotheses provide accurate foundations for inference and intervention—not to disconfirm their alternatives. By recognizing the central role of invariance in causal learning, the phenomenon of positive testing may be reinterpreted as a rational information-seeking strategy

    Rural waste generation: a geographical survey at local scale

    Get PDF
    "The paper examines the per capita waste generation rates from from rural areas of Neamț County (Romania) using thematic cartography. Geographical approach of this issue is difficult because the lack of a geostatistic database at commune scale. Spatial analysis of waste indicators reveals several disparities between localities. Comparability of data between communes located in various geographical conditions must be carrefully made according to local waste management systems. Several dysfunctionalities are outlined in order to compare these results, on the one hand, between localities and on the one hand, between recent years. Geographical analysis of waste generation rates is imperative for a proper monitoring of this sector. Data from 2009, 2010 and 2012 shows that rural waste management is in a full process of change towards a more organized, stable and efficient system." (author's abstract

    Does dietary tocopherol level affect fatty acid metabolism in fish?

    Get PDF
    Fish are a rich source of the n-3 polyunsaturated fatty acids (PUFA), particularly the highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids, which are vital constituents for cell membrane structure and function, but which are also highly susceptible to attack by oxygen and other organic radicals. Resultant damage to PUFA in membrane phospholipids can have serious consequences for cell membrane structure and function, with potential pathological effects on cells and tissues. Physiological antioxidant protection involves both endogenous components, such as free radical scavenging enzymes, and exogenous dietary micronutrients including tocopherols and tocotrienols, the vitamin E-type compounds, widely regarded as the primary lipid soluble antioxidants. The antioxidant activities of tocopherols are imparted by their ability to donate their phenolic hydrogen atoms to lipid (fatty acid) free radicals resulting in the stabilisation of the latter and the termination of the lipid peroxidation chain reaction. However, tocopherols can also prevent PUFA peroxidation by acting as quenchers of singlet oxygen. Recent studies on marine fish have shown correlations between dietary and tissue PUFA/tocopherol ratios and incidence of lipid peroxidation as indicated by the levels of TBARS and isoprostanes. These studies also showed that feeding diets containing oxidised oil significantly affected the activities of liver antioxidant defence enzymes and that dietary tocopherol partially attenuated these effects. However, there is evidence that dietary tocopherols can affect fatty acid metabolism in other ways. An increase in membrane PUFA was observed in rats deficient in vitamin E. This was suggested to be due to over production of PUFA arising from increased activity of the desaturation/elongation mechanisms responsible for the synthesis of PUFA. Consistent with this, increased desaturation of 18:3n-3 and 20:5n-3 in hepatocytes from salmon fed diets deficient in tocopherol and/or astaxanthin has been observed. Although the mechanism is unclear, tocopherols may influence biosynthesis of n-3PUFA through alteration of cellular oxidation potential or “peroxide tone”

    Five endometrial cancer risk loci identified through genome-wide association analysis.

    Get PDF
    We conducted a meta-analysis of three endometrial cancer genome-wide association studies (GWAS) and two follow-up phases totaling 7,737 endometrial cancer cases and 37,144 controls of European ancestry. Genome-wide imputation and meta-analysis identified five new risk loci of genome-wide significance at likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1, near SIVA1). We also found a second independent 8q24.21 signal (rs17232730). Functional studies of the 13q22.1 locus showed that rs9600103 (pairwise r(2) = 0.98 with rs11841589) is located in a region of active chromatin that interacts with the KLF5 promoter region. The rs9600103[T] allele that is protective in endometrial cancer suppressed gene expression in vitro, suggesting that regulation of the expression of KLF5, a gene linked to uterine development, is implicated in tumorigenesis. These findings provide enhanced insight into the genetic and biological basis of endometrial cancer.I.T. is supported by Cancer Research UK and the Oxford Comprehensive Biomedical Research Centre. T.H.T.C. is supported by the Rhodes Trust and the Nuffield Department of Medicine. Funding for iCOGS infrastructure came from the European Community's Seventh Framework Programme under grant agreement 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692 and C8197/A16565), the US National Institutes of Health (R01 CA128978, U19 CA148537, U19 CA148065 and U19 CA148112), the US Department of Defense (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, the Susan G. Komen Foundation for the Cure, the Breast Cancer Research Foundation and the Ovarian Cancer Research Fund. SEARCH recruitment was funded by a programme grant from Cancer Research UK (C490/A10124). Stage 1 and stage 2 case genotyping was supported by the NHMRC (552402 and 1031333). Control data were generated by the WTCCC, and a full list of the investigators who contributed to the generation of the data is available from the WTCCC website. We acknowledge use of DNA from the British 1958 Birth Cohort collection, funded by UK Medical Research Council grant G0000934 and Wellcome Trust grant 068545/Z/02; funding for this project was provided by the Wellcome Trust under award 085475. NSECG was supported by the European Union's Framework Programme 7 CHIBCHA grant and Wellcome Trust Centre for Human Genetics Core Grant 090532/Z/09Z, and CORGI was funded by Cancer Research UK. BCAC is funded by Cancer Research UK (C1287/A10118 and C1287/A12014). OCAC is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07) and the UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.356

    Improved reference genome of Aedes aegypti informs arbovirus vector control

    Get PDF
    Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector

    Team Dynamics Theory: Nomological network among cohesion, team mental models, coordination, and collective efficacy

    Get PDF
    I put forth a theoretical framework, namely Team Dynamics Theory (TDT), to address the need for a parsimonious yet integrated, explanatory and systemic view of team dynamics. In TDT, I integrate team processes and outputs and explain their relationships within a systemic view of team dynamics. Specifically, I propose a generative nomological network linking cohesion, team mental models, coordination, collective efficacy, and team outcomes. From this nomological conceptualization, I illustrate how myriad alternative models can be derived to account for variance in different working teams, each comprised of unique members, and embedded in singular contexts. I outline TDT’s applied implications for team development, the enhancement of team functioning, and the profiling of team resilience. I conclude by discussing how TDT’s ontological and nomological propositions can be tested through various theoretical inquiries, methodological approaches, and intervention-based studies

    Designing ionic liquids: the chemical structure role in the toxicity

    No full text
    Ionic liquids (ILs) are a novel class of solvents with interesting physicochemical properties. Many different applications have been reported for ILs as alternatives to organic solvents in chemical and bioprocesses. Despite the argued advantage of having low vapor pressure, even the most hydrophobic ILs show some degree of solubility in water, allowing their dispersion into aquatic systems and raising concerns on its pollutant potential. Moreover, nowadays most widespread notion concerning the ILs toxicity is that there is a direct relationship with their hydrophobicity/lipophilicity. This work aims at enlarging the currently limited knowledge on ILs toxicity by addressing negative impacts in aquatic ecosystems and investigating the possibility of designing hydrophobic ILs of low ecotoxicity, by the manipulation of their chemical structures. The impact of aromaticity on the toxicity of different cations (pyridinium, piperidinium, pyrrolidinium and imidazolium) and hydrophobic anions (bis(trifluoromethylsulfonyl)imide [NTf2] and hexafluorophosphate [PF6]) was analysed. Concomitantly, several imidazolium-based ILs of the type [C (n) C (m) C (j) im][NTf2] were also studied to evaluate the effects of the position of the alkyl chain on the ILs' toxicity. For that purpose, standard assays were performed using organisms of different trophic levels, Vibrio fischeri, Pseudokirchneriella subcapitata and Daphnia magna, allowing to evaluate the consistency of the structure-activity relationships across different biological targets. The results here reported suggest the possibility of designing ILs with an enhanced hydrophobic character and lower toxicity, by elimination of their aromatic nature
    corecore